

MEASURING INSTRUMENTS

- ARRESTERS
- TRANSDUCERS
- POWER FACTOR CONTROLLERS

POWER MONITORING
EQUIPMENT (F-MPC)
POWER MONITORING
EQUIPMENT (F-MPC)

INDIVIDUAL CATALOG 09 from D\&C CATALOG 20th Edition

Measuring Instruments, Transducers
Arresters, Power Factor Controllers Power Monitoring Equipment

	Page
Switchboard Instruments	WM8N type ... 09/1
	Power line multi-meters WE1MA ... 09/10
Panel Instruments	F type .. 09/23
Transducers	C series .. 09/32
	WF series ... 09/39
	WH7 series ... 09/43
	WT2AC ... 09/55
Arresters (Surge protective devices)	CN232, 233 .. 09/57
	CN226 .. 09/60
	CN227 .. 09/62
	CN2340, 2341 .. 09/70
Instrument Transformers	General information .. 09/71
	Through-type CT/CC3L ... 09/72
	CT with primary winding/CC3P ... 09/75
	Through type CT/CC3M .. 09/77
	Split type CT/CC2 ... 09/82
	Voltage transformers/CD32, 34 ... 09/84
	Optional accessories ... 09/85
Power Factor Controllers	Automatic power factor regulator QC06E and QC12E 09/86
Power Monitoring Equipment	General information .. 09/102
	Multiple function protectors and controllers F-MPC60B, F-MPC30 09/103
	Power monitoring unit F-MPC04, F-MPC04P, F-MPC04S \qquad 09/118
	MCCB with ZCT and zero-phase CT ... 09/132
	Current transformers CC2.. 09/134
	Terminal relay RS16.. 09/137
	Connector terminal-block AU-CW21B1... 09/138

MINIMUM ORDERS

Orders amounting to less than $\mathbf{¥ 1 0 , 0 0 0}$ net per order will be charged as $¥ 10,000$ net per order plus freight and other charges.

WEIGHTS AND DIMENSIONS

Weights and dimensions appearing in this catalog are the best information available at the time of going to press. FUJI ELECTRIC FA has a policy of continuous product improvement, and design changes may make this information out of date.
Please confirm such details before planning actual construction.

INFORMATION IN THIS CATALOG IS SUBJECT TO CHANGE WITHOUT NOTICE.

WM8N type wide-angle indicating switchboard instruments

- Description

WN8N-type meters are used in many industrial applications such as switchboards, supervisory panels, metal-clad switchgear and control desks. These are compact in size and easy to read. Scales have equal intervals and indicate through a 240° angle, a feature which distinguishes them from the conventional meters.
Meters can be read at a distance, since instrument surfaces are protected by a non-reflecting glass and are not affected by reflections from room lighting .
Ammeters are provided with an overload scale in red. These instruments comply with the requirements of JIS C1102 and are highly reliable. They can withstand a great deal of abuse in use because of their rugged construction.

- Features

- High accuracy External magnetic fields cannot influence readings.
- Accuracy class: 1.5
- Easy-to-read long-scales and pointerindications can easily be read from a distance.
- $110 \times 110 \mathrm{~mm}$ and $80 \times 80 \mathrm{~mm}$ front frame sizes.
- Auxiliary equipment such as shunt, impedance box and series resistor is available.

Meter	Description				110 mm square Type	80 mm square Type
AC ammeter	For direct connection Measuring range Extended range type $(0-X-3 X)$ $0-1 \mathrm{~A}$ $0-1-3 \mathrm{~A}$ $0-3 \mathrm{~A}$ $0-3-9 \mathrm{~A}$ $0-5 \mathrm{~A}$ $0-5-15 \mathrm{~A}$ $0-10 \mathrm{~A}$ $0-10-30 \mathrm{~A}$ $0-15 \mathrm{~A}$ $0-15-45 \mathrm{~A}$ $0-20 \mathrm{~A}$ $0-20-60 \mathrm{~A}$ $0-30 \mathrm{~A}$ -		Operating principle RMS responding Moving iron	Power consumption 0.4VA 3VA	WM8NAR3 (RMS responding) WM8NAS3 (Moving iron)	WM8NAR6 (RMS responding) WM8NAS6 (Moving iron)
	For connection to CT CT ratio Measuring range 5/5A $0-5 A$ 10/5A $0-10 A$ 15/5A $0-15 A$ 20/5A $0-20 A$ 30/5A $0-30 A$ 40/5A $0-40 A$ 50/5A $0-50 A$ 60/5A $0-60 A$ 75/5A $0-75 A$ 100/5A $0-100 A$ 150/5A $0-150 A$ 200/5A $0-200 A$ 300/5A $0-300 A$ 400/5A $0-400 A$ 500/5A $0-500 A$ 600/5A $0-600 A$ 750/5A $0-750 A$ 800/5A $0-800 A$ 1000/5A $0-1000 A$ 1000/5A $0-1 k A$	$\begin{aligned} & \text { Extended type }(0-X-3 X) \\ & 0-5-15 \mathrm{~A} \\ & 0-10-30 \mathrm{~A} \\ & 0-15-45 \mathrm{~A} \\ & 0-20-60 \mathrm{~A} \\ & 0-30-90 \mathrm{~A} \\ & 0-40-120 \mathrm{~A} \\ & 0-50-150 \mathrm{~A} \\ & 0-60-180 \mathrm{~A} \\ & 0-75-225 \mathrm{~A} \\ & 0-100-300 \mathrm{~A} \\ & 0-150-450 \mathrm{~A} \\ & 0-200-600 \mathrm{~A} \\ & 0-300-900 \mathrm{~A} \\ & 0-400-1200 \mathrm{~A} \\ & 0-500-1500 \mathrm{~A} \\ & 0-600-1800 \mathrm{~A} \\ & 0-750-2250 \mathrm{~A} \\ & 0-800-2400 \mathrm{~A} \\ & 0-1000-3000 \mathrm{~A} \\ & 0-1 \mathrm{kA}-3 \mathrm{kA} \end{aligned}$	Operating principle RMS responding Moving iron	Power consumption $0.4 \mathrm{VA}$ 3VA		

Ordering information

Specify the following:

1. Type number (Ordering code)
2. Measuring range
3. Supply voltage and frequency
4. Connection (When connecting to VT or CT, specify VT ratio or CT ratio)

For further information, see page 09/04.

Switchboard Instruments
WM8N type

Meter	Description				110 mm square Type (Ordering code)	80 mm square Type (Ordering code)
AC voltmeter	For direct connection Measuring range $\begin{aligned} & 0-50 \mathrm{~V} \\ & 0-100 \mathrm{~V} \\ & 0-150 \mathrm{~V} \\ & 0-300 \mathrm{~V} \\ & 0-600 \mathrm{~V} \end{aligned}$ For connection to VT VT ratio 440/110V 3300/110V 6600/110V 6600/110V Measuring range $0-600 \mathrm{~V}$ $0-4.5 \mathrm{kV}$ $0-9 \mathrm{kV}$ $0-9000 \mathrm{~V}$	For connection to VT Measuring range Operating VT ratio $0-600 \mathrm{~V}$ principle 440/110V $0-4.5 \mathrm{kV}$ RMS responding $3300 / 110 \mathrm{~V}$ $0-4$. Moving iron $6600 / 110 \mathrm{~V}$ $0-9 \mathrm{kV}$ $6600 / 110 \mathrm{~V}$ $0-9000 \mathrm{~V}$ VT ratio:Y/110 (Y: VT primary voltage)		Power consumption $50 \mathrm{~V}: 0.1 \mathrm{~V}$ 100V: 0.1VA 150V: 0.9VA 300V: 1.8VA 600V: 1.2VA 8VA Power consumption 0.9VA 8VA	WM8NVR3 (RMS responding) WM8NVS3 (Moving iron)	WM8NVR6 (RMS responding) WM8NVS6 (Moving iron)
DC ammeter	For direct connection Measuring range Operating principle: Moving coil type $0-1 m \mathrm{~mA}$ $0-1 \mathrm{~A}$				WM8NAM3 (Moving coil)	WM8NAM6 (Moving coil)
DC voltmeter	For direct connection Measuring range $\begin{array}{ll} 0-10 \mathrm{~V} & 0-200 \mathrm{~V} \\ 0-30 \mathrm{~V} & 0-300 \mathrm{~V} \\ 0-50 \mathrm{~V} & 0-500 \mathrm{~V} \\ 0-100 \mathrm{~V} & 0-600 \mathrm{~V} \\ 0-150 \mathrm{~V} & \end{array}$ For connection to series resistor Measuring range $\begin{aligned} & 0-750 \mathrm{~V} \\ & 0-1 \mathrm{kV} \\ & 0-1.5 \mathrm{kV} \\ & 0-2 \mathrm{kV} \end{aligned}$	Operating princ Series resister: Internal resistan 10 V : $10 \mathrm{k} \Omega$ 30V: $30 \mathrm{k} \Omega$ $50 \mathrm{~V}: 50 \mathrm{k} \Omega$ 100V: 100k Ω 150V: 150k Ω Operating princ Series resister: Power consump	ple: Moving col Internal ce: 200V: 2 300V: 3 500V: 5 600V: 600 ple: Moving External tion: 1 mA	il type $0 \mathrm{k} \Omega$ $0 \mathrm{k} \Omega$ $0 \mathrm{k} \Omega$ $0 \mathrm{k} \Omega$ il type	WM8NVM3 (Moving coil)	WM8NVM6 ((Moving coil))

Ordering information

Specify the following:

1. Type number (Ordering code)
2. Measuring range
3. Supply voltage and frequency
4. Connection (When connecting to VT or CT, specify VT ratio or CT ratio)

For further information, see page 09/04.

Meter	Description		110 mm square Type	80mm square Type
Frequency meter	Measuring range $45-55 \mathrm{~Hz} 110 \mathrm{~V}$ $55-65 \mathrm{~Hz} 110 \mathrm{~V}$ $45-55 \mathrm{~Hz} 220 \mathrm{~V}$ $55-65 \mathrm{~Hz} 220 \mathrm{~V}$	Operating principle: Frequency/DC transducing type Power consumption: 1.5VA at 110 V 1.5 VA at 220 V	WM8NP13	WM8NP16
Single-phase 2-wire wattmeter	For connection to VT and CT Measuring range $\begin{aligned} & 0-Z k W \\ & Z=0.5 \times \frac{X}{5} \times \frac{Y}{110} \end{aligned}$ Z: kWatt X: CT primary current Y: VT primary voltage	Operating principle: Power/DC transducing type Power consumption (WM8NC03) Current coil: 1VA (at 5A) Voltage coil: 2VA (at 110V) Power consumption (WM8NC06) Current coil: 0.5 VA (at 5A) Voltage coil: 1.7VA (at 110V)	WM8NC03	WM8NC06
3-phase 3-wire wattmeter	For connection to VT and CT Measuring range $\begin{aligned} & 0-\mathrm{ZkW} \\ & \mathrm{Z}=\frac{\mathrm{X}}{5} \times \frac{\mathrm{Y}}{110} \end{aligned}$ Z: kWatt X: CT primary current Y: VT primary voltage	Operating principle: Power/DC transducing type Power consumption Current coil: 0.5 VA per element (at 5 A) Voltage coil: 1.7VA per element (at 110V)	WM8NC23	WM8NC26
3-phase 4-wire wattmeter	For connection to VT and CT Measuring range $\begin{aligned} & 0-\mathrm{ZkW} \\ & \mathrm{Z}=\frac{\mathrm{X}}{5} \times \frac{\mathrm{Y}}{110} \end{aligned}$ Z: kWatt X: CT primary current Y: VT primary voltage	Operating principle: Power/DC transducing type Power consumption Current coil: 0.5 VA per element (at 5 A) Voltage coil: 0.8 VA per element (at 110 V)	WM8NC33	WM8NC36
3-phase 3-wire varmeter	For connection to VT and CT Measuring range 0-Zkvar $Z=\frac{X}{5} \times \frac{Y}{110}$ Z: kvar X: CT primary current Y: VT primary voltage	Operating principle: Reactive power/DC transducing type Power consumption Current coil: 0.5 VA per element (at 5 A) Voltage coil: 1.7VA per element (at 110V)	WM8NV23	WM8NV26
3-phase 4-wire varmeter	For connection to VT and CT Measuring range 0-Zkvar $Z=\frac{X}{5} \times \frac{Y}{110}$ Z: kvar X: CT primary current Y: VT primary voltage	Operating principle: Reactive power/DC transducing type Power consumption Current coil: 0.5 VA per element (at 5 A) Voltage coil: 1.7VA per element (at 110V)	WM8NV33	WM8NV36
3-phase 3-wire power factor meter (for balanced circuit)	For connection to VT and CT $\begin{aligned} & \text { VT ratio: }=\frac{\mathrm{Y}}{110} \mathrm{~V} \\ & \text { CT ratio: }=\frac{\mathrm{X}}{5} \mathrm{~A} \end{aligned}$	Operating principle: Phase angle/DC transducing type Power consumption Current coil: 0.9 VA (at 5A) Voltage coil: 0.6 VA per phase (at 110 V)	WM8NA13	WM8NA16
3-phase 3-wire power factor meter (for unbalanced circuit)	For connection to VT and CT $\begin{aligned} & \text { VT ratio: }=\frac{\mathrm{Y}}{110} \mathrm{~V} \\ & \text { CT ratio: }=\frac{\mathrm{X}}{5} \mathrm{~A} \end{aligned}$	Operating principle: Phase angle/DC transducing type Power consumption Current coil: 1.1VA per phase (at 5A) Voltage coil: 1.9VA per phase (at 110V)	WM8NA23	WM8NA26
3-phase 4-wire power factor meter (for unbalanced circuit)	For connection to VT and CT $\begin{aligned} & \text { VT ratio: }=\frac{\mathrm{Y}}{110} \mathrm{~V} \\ & \text { CT ratio: }=\frac{\mathrm{X}}{5} \mathrm{~A} \end{aligned}$	Operating principle: Phase angle/DC transducing type Power consumption Current coil: 1.1VA per phase (at 5A) Voltage coil: 0.8 VA per phase (at 110 V)	WM8NA43	WM8NA46

[^0]
-Dimensions, mm

WM8NAS3, WM8NVS3, WM8NAR3, WM8NVR3, WM8NAM3, WM8NVM3, WM8NA13, WM8NP13, WM8NAT3

* AC ammeter (WM8NAS3 type): 72 AC voltmeter (WM8NVS3 type): 99

WM8NC03, WM8NC13, WM8NC23, WM8NC33, WM8NV23, WM8NV33, WM8NA23, WM8NA43

WM8N■6

* AC ammeter (WM8NAS6): 72.5

AC voltmeter (WM8NVS6): 72.5

- DC converter for WM8N $\square 6$

- Series resistor

DM-2

DM-5 to 25

Type	Rating	A	B	C	D	E	F	G	d	Mass (kg)
DM-5	3 to 5 kV	170	120	110	154	170	140	106	4	1.0 or less
DM-10	6 to 10kV	220	160	140	194	210	140	106	4	1.5 or less
DM-15	12 to 15 kVV	290	210	200	248	264	190	146	5	2.0 or less
DM-20	20 kV	390	260	300	294	310	220	176	5	3.0 or less
DM-25	25 kV	500	330	400	356	372	280	236	5	3.5 or less

Switchboard Instruments
WM8N type

■ Wiring diagrams

AC ammeter

AC voltmeter

For connection VT

For connection WM8NVS6 type

DC ammeter

DC voltmeter

Load

Load

Load

Frequency meter

Wattmeter: WM8NC06
Varmerter: WM8NV16

Wattmeter: WM8NC26
Varmerter: WM8NV26

Wattmeter: WM8NC03
Varmerter: WM8NV13

Wattmeter: WM8NC23
Varmerter: WM8NV23

Varmerter: WM8NV36

Wattmeter: WM8NC16

Wattmeter: WM8NC36

Wattmeter: WM8NC13

Wattmeter: WM8NC33

Load
Wattmeter: WM8NV33

Switchboard Instruments
WM8N type

Power foctor meter: WM8NA06, 03

Power foctor meter: WM8NA26

Power foctor meter: WM8NA46

Power foctor meter: WM8NA16, 13

Power foctor meter: WM8NA23

Power foctor meter: WM8NA43

Shunt WM9N-1, -2

Features

- Shunt for DC ammeter. JIS (JIS C-1721) class 0.5 and class 1.0 models are available. Select the model based on the required accuracy.
- Keep in mind that a shunt is a source of heat generation, and select a shunt with a current value with sufficient margin. (As a general rule, select a shunt with approximately 1.5 times the continuous operating current.)
- The standard terminal voltage for the shunt is 60 mV , but models with voltage of 100 mV can also be produced.

Functions and specifications

Item	Applicable meter	JIS Class 0.5 (JIS C-1721)			JIS Class 1.0 (JIS C-1721)		
		Shunt rating	Shunt base / no base	Type	Shunt rating	Shunt base / no base	Type
Shunt	DC shunt Shunt connection items	60 mV , 1A	With base	WM9N-1	60 mV 1A	With base	WM9N-2
		2 A			2 A		
		3A			3A		
		4A			4A		
		5 A			5A		
		7.5A			7.5A		
		10A			10A		
		15A			15A		
		20A			20A		
		30A			30A		
		40A			40A		
		50A			50A		
		60A			60A		
		75A			75A		
		100A			100A		
		150A			150A		
		200A			200A		
		250A	No base		250A	No base	
		300A			300A		
		400A			400A		
		500A			500A		
		600A			600A		

Note 1: Only one meter and can be connected to each shunt.

Dimensions, mm

- 1 to 4A (with base)

- 5 to 50A (with base)

- 60 to 200A (with base)

* () 60 to 100A
- 250 to 600A (no base)

- Dimensions, mm

Connection wires
Use a round-trip resistance of 0.06Ω for the shunt connection conductors.
The same applies for class 1.0 models without connection wires.

One-way length (m)	2	3	5.5	9	12.5	22	35
Cross-section area $\left(\mathrm{mm}^{2}\right)$	1.25	2	3.5	5.5	8	14	22

Current	A	B	C	D	E	T
$250 \cdot 300 \mathrm{~A}$	110	130	30	36	M10x30	4
400 A	110	140	40	36	M12x35	5
$500 \mathrm{~A} \cdot 600 \mathrm{~A}$	120	160	40	41	M12x35	6

WE1MA power line multi-meters

Description

Perform measurement and monitoring for 213 points in 52 categories for Single-phase/2-wire, Single-phase/3-wire, 3 -phase/3-wire, and 3-phase/4-wire

Features

- With one unit, you can measure or monitor the voltage, current, demand current, power, demand power, reactive power, apparent power, power factor, frequency, leakage current, harmonic effective value (A, V), distortion, harmonic content rate, power level, and reactive power level.
- The unit supports 3-phase/3-wire, Single-phase/3-wire, and Single-phase/2-wire and switching to 3 -phase/4-wire is supported with 2VT, 3CT/3VT, or 3CT settings.
- The measurements are displayed using a four-element display: one display on the main monitor and three displays on the sub-monitors along with a bar graph.
- Measure and output alarms for leakage current.

- Outputs include four analog circuits, a pulse output, an alarm output, a CPU error output, and a communications output (according to specification).
- Communications output supports F-MPC Net, CC-Link, AnyWire, Modbus RTU, and RS-485 (according to user specification).
- All models comply with the RoHS Directive (i.e., lead-free).

Types and ratings

Measurement	Input specifications		Type
	Input circuits	Input range	
Current (max. demand, demand, instantaneous), power (max. demand, demand, instantaneous), voltage, power factor, frequency, reactive power, power level, reactive power level, harmonic effective value, distortion, and harmonic content rate	Single-phase/2-wire, Single-phase/3-wire, 3-phase/3-wire or all common	150V/300V, 5A	WE1MA-A \square F $\square \square$-000
		150V, 5A	WE1MA-A $\square 1 \square \square$-000
		300V, 5A	WE1MA-A \square 3 $\square \square-000$
		5A	WE1MA-A $\square 5 \square \square-000$
		150 V	WE1MA-A $\square 9 \square \square$-000
		300 V	WE1MA-A \square A $\square \square-000$
		150V/300V, 1A	WE1MA-A \square G $\square \square$-000
		150V, 1A	WE1MA-A $\square 2 \square \square$-000
		300V, 1A	WE1MA-A $\square 4 \square \square$-000
		1A	WE1MA-A $\square 6 \square \square$-000
Current (max. demand, demand, instantaneous), power (max. demand, demand, instantaneous), voltage, power factor, frequency, reactive power, power level, reactive power level, harmonic effective value, distortion, harmonic content rate, and leakage current	Single-phase/2-wire + leakage current, Single-phase/3-wire + leakage current 3-phase/3-wire+leakege current or all common	150/300V, 5A	WE1MA-A \square F $\square \square$-000
		150V, 5A	WE1MA-A $\square 1 \square \square$-000
		300V, 5A	WE1MA-A \square 3 $\square \square$-000
		5A	WE1MA-A $\square 5 \square \square-000$
		150 V	WE1MA-A $\square 9 \square \square$-000
		300 V	WE1MA-A \square A $\square \square$-000
		150/300V, 1A	WE1MA-A \square G $\square \square-000$
		150V, 1A	WE1MA-A $\square 2 \square \square$-000
		300V, 1A	WE1MA-A $\square 4 \square \square$-000
		1A	WE1MA-A $\square 6 \square \square$-000
		Type given above and ZCT50A	
		Type given above and ZCT100A	
		Type given above and ZCT200A	
		Type given above and ZCT400A	
		Type given above and ZCT600A	
		Type given above and ZCT100A (outdoor)	
Current (max. demand, demand, instantaneous), power (max. demand, demand, instantaneous), voltage, power factor, frequency, reactive power, apparent power, power level, reactive power level, harmonic effective value, distortion, and harmonic content rate	3-phase, 4-wire	$150 / \sqrt{3} \mathrm{~V}$ or $300 / \sqrt{ } 3 \mathrm{~V}$ common, 5A	WE1MA-A4F $\square \square$-000
		150/ 3 3V, 5A	WE1MA-A41 $\square \square$-000
		300/ 3 3V, 5A	WE1MA-A43 $\square \square$-000
		5A	WE1MA-A45 $\square \square$-000
		150/ 3 V , 5A	WE1MA-A49 $\square \square$-000
		300/ 3 3V, 5A	WE1MA-A4A $\square \square$-000
		150/ $\sqrt{3} \mathrm{~V}$ or $300 / \sqrt{ } 3 \mathrm{~V}$ common, 1A	WE1MA-A4G $\square \square$-000
		150/ $\sqrt{3} \mathrm{~V}, 1 \mathrm{~A}$	WE1MA-A42 $\square \square$-000
		300/ 3 3, 1A	WE1MA-A44 $\square \square$-000
		1 A	WE1MA-A46 $\square \square$-000
		440/ 3 V, 5A	WE1MA-A4B $\square \square$-000
		440/ 3 V, 1A	WE1MA-A4C $\square \square$-000

Type number nomenclature

Basic type

WE1MA -

Hardware model
B : Back light Green
E: Back light White
Input circuits
F: Single-phase/2-wire, Single-phase/3-wire,
and 3-phase/3-wire common
1 : Single-phase, 2-wire
2 : Single-phase, 3-wire
3 : 3-phase, 3-wire
G: Single-phase/2-wire, Single-phase/3-wire, 3-phase/3-wire + leakage current common
5 : Single-phase, 2-wire + leakage current
6 : Single-phase, 3-wire + leakage current
7 : 3-phase, 3-wire + leakage current
4 : 3-phase, 4-wire

Input range

F: 150V, 300V common, 5A
$1: 150 \mathrm{~V}, 5 \mathrm{~A}$
3 : 300V, 5A
5:5A
9:150V
A: 300V
G: 150V, 300 V common, 1 A
$2: 150 \mathrm{~V}, 1 \mathrm{~A}$
$4: 300 \mathrm{~V}, 1 \mathrm{~A}$
6:1A
7 : 5A (3-phase, 3-wire, 3CT)
8:1A (3-phase, 3-wire, 3CT)
P: 150V, 5A (3-phase, 3-wire, 2VT, 3CT)
Q : 150V, 1A (3-phase, 3-wire, 2VT, 3CT)
R : 300V, 5A (3-phase, 3-wire, 2VT, 3CT)
S:300V, 1A (3-phase, 3-wire, 2VT, 3CT)
3-phase, 4-wire
F : $150 / \sqrt{3} \mathrm{~V}$ or $300 / \sqrt{ } 3 \mathrm{~V}, 5 \mathrm{~A}$
$1: 150 / \sqrt{ } 3 V, 5 A$
$3: 300 / \sqrt{ } 3 V, 5 A$
5:5A
$9: 150 / \sqrt{ } 3 \mathrm{~V}$
A : 300/ $\sqrt{3} \mathrm{~V}$
G: $150 / \sqrt{ } 3 \mathrm{~V}$ or $300 / \sqrt{ } 3 \mathrm{~V}, 1 \mathrm{~A}$
$2: 150 / \sqrt{3} \mathrm{~V}, 1 \mathrm{~A}$
$4: 300 / \sqrt{3 V}, 1 \mathrm{~A}$
6:1A
B: 440/ $\sqrt{3} \mathrm{~V}, 5 \mathrm{~A}$
C: 440/ $\sqrt{3} \mathrm{~V}, 1 \mathrm{~A}$
Z : Depends on user specification.

Auxiliary power supply

1 : 85 to 264 V AC or 80 to 143 V DC
$2: 20$ to 56V DC

LCD viewing direction

1 : Upper mounting (viewed from below)
2 : Lower mounting (viewed from above)

- Specifications and performance

- Standard specifications and performance

Item	Specification														
Measurements	Measurement		Display error	Output error	Measurement			Display error	Output error						
	Voltage (34 ranges)		$\pm 1.0 \%$	$\pm 0.5 \%$	nth harmonic effective value		Voltage, current	$\pm 1.5 \%$	$\pm 1.5 \%$						
	Current (76 ranges)		$\pm 1.0 \%$	$\pm 0.5 \%$	nth harmonic content rate		Voltage	$\pm 1.0 \%$	$\pm 2.5 \%$						
	Power		$\pm 1.0 \%$	$\pm 0.5 \%$			Current	$\pm 2.5 \%$	$\pm 2.5 \%$						
	Reactive power		$\pm 1.0 \%$	$\pm 0.5 \%$	5th harmonic conversion effective value		Voltage, current	$\pm 1.5 \%$	$\pm 1.5 \%$						
	Apparent power *1		$\pm 1.0 \%$	$\pm 0.5 \%$	5th harmonic conversion effective value		Voltage	$\pm 1.0 \%$	$\pm 2.5 \%$						
	Power factor		$\pm 2.0 \%$	$\pm 2.0 \%$			Current	$\pm 2.5 \%$	$\pm 2.5 \%$						
	Frequency		$\pm 0.5 \%$	$\pm 0.5 \%$	Power level		Power factor of 1	$\pm 2.0 \%$	$\pm 2.0 \%$						
	Leakage current lo method, Igr method		$\pm 2.5 \%{ }^{* 2}$	$\pm 2.5 \%{ }^{* 2}$			Power factor of 0.5	$\pm 2.5 \%$	$\pm 2.5 \%$						
			Reactive power level		Power factor of 1	$\pm 2.5 \%$	$\pm 2.5 \%$								
	Fundamental wave effective value	Voltage		$\pm 1.5 \%$	$\pm 1.5 \%$	Reactive power level		Power factor of 0.87	$\pm 2.5 \%$	$\pm 2.5 \%$					
		Current	$\pm 1.5 \%$	$\pm 1.5 \%$	${ }^{* 1}$ For 3-phase/4-wire only ${ }^{* 2}$ Error for ZCT is not included. It is ± 0.0025 A (ZCT primary) at a leakage current detection sensitivity current of 0.1 A max.										
	Distortion	Voltage	$\pm 1.0 \%$	$\pm 2.5 \%$											
		Current	$\pm 2.5 \%$	$\pm 2.5 \%$											
Time limit setting	Demand current		$0 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}, 20 \mathrm{~s}, 30 \mathrm{~s}, 40 \mathrm{~s}, 50 \mathrm{~s}, 1 \mathrm{~min}, 2 \mathrm{~min}, 3 \mathrm{~min}, 4 \mathrm{~min}, 5 \mathrm{~min}, 6 \mathrm{~min}, 7 \mathrm{~min}, 8 \mathrm{~min}, 9 \mathrm{~min}, 10 \mathrm{~min}$, $15 \mathrm{~min}, 20 \mathrm{~min}, 25 \mathrm{~min}, 30 \mathrm{~min}$ (95% time limit)												
	Demand power														
	Harmonic measurement		Average time limit: $0 \mathrm{~min}, 1 \mathrm{~min}, 2 \mathrm{~min}, 5 \mathrm{~min}, 10 \mathrm{~min}, 15 \mathrm{~min}, 30 \mathrm{~min}$ (average measurement)												
Bar graph error	$\pm 10 \%$ (\% of span)														
Temperature effect	$23 \pm 10^{\circ} \mathrm{C}$ permissible differential														
Conforming standards	JIS C 1102-1, -2, -3, -4, -5, -7(1997), JIS C 1111(1985), JIS C 1216(1995), JIS C 1263(1995), JIS C8374(1991), EIA standard RS-485														
Display refresh time	Approx. 1s (approx. 0.25 s for a bar graph) (For current leakage measurement, the refresh time is $2 s$ max. for the digital display and the bar graph and 10s for the digital display and the bar graph for harmonic measurement.)														
Display elements and composition	Liquid crystal display		Main monitor			Character height: $11 \mathrm{~mm}, 5$ digits									
			Sub-monitor on left			Character height: $6 \mathrm{~mm}, 4$ digits									
			Sub-monitor in center and on right			Character height: 6mm, 5 digits									
			Bar graph			20 dots									
LCD viewing angle	Standard item		Upper mounting (viewed from below): top: 10°, bottom: 60°, left/right: 60°												
	Special items		Lower mounting (viewed from above): top: 60°, bottom: 10°, left/right: 60°												
Backlight	LED backlight: Green or White, always ON, automatically turns OFF (after 5min with no operation), can be set to always OFF.														
Input power consumption (VA)	Voltage circuit		0.2VA max.												
	Current circuit		0.1VA max. (5A, 1A)												
Overload resistance	Voltage circuit		$2 \times$ rated voltage for $10 \mathrm{~s}, 1.2 \times$ rated current for continuous												
	Current circuit		$40 \times$ rated voltage for $1 \mathrm{~s}, 20 \times$ rated current for $4 \mathrm{~s}, 10 \times$ for 16 s , $1.2 \times$ rated current for continuous												
	Power supply power		$1.5 \times$ rated voltage for $10 \mathrm{~s}, 1.2 \times$ rated current for continuous, $1.5 \times$ rated voltage for 10 s at 110 V DC, $1.3 \times$ rated voltage for continuous at 110 V DC												
Insulation resistance JIS C 1102-1 JIS C 1111	Between electrical circuits and external cabinet (ground)					$50 \mathrm{M} \Omega$ min. with 500V DC tester									
	Between inputs, outputs, and auxiliary power supply														
	Between outputs (analog, communication, pulse, or alarm)														
	Between pulse outputs														
	Between alarm outputs														
	Analog outputs (negative common) are not isolated.														
Withstand voltage JIS C 1102-1 JIS C 1111	Between electrical circuits and external cabinet (ground)					2000V AC (50/60Hz), 1 min .									
	Between inputs, outputs, and auxiliary power supply														
	Between outputs (analog, communication, pulse, or alarm)					1500 V AC ($50 / 60 \mathrm{~Hz}$), 1min.									
	Between pulse outputs														
	Between alarm outputs														
	Analog outputs (negative common) are not isolated.														
Impulse withstand voltage JIS C 1111	Between auxiliary power supply and cabinet (ground) (only with leakage current measurement)					$7 \mathrm{kV}, 1.2 / 50 \mu \mathrm{~s}$, positive and negative polarity, three times each									
	Between electrical circuits (except analog outputs and communications outputs) and cabinet (ground)					$6 \mathrm{kV}, 1.2 / 50 \mu \mathrm{~s}$, positive and negative polarity, three times each									
	Between analog outputs or communications outputs and cabinet (ground)					$5 \mathrm{kV}, 1.2 / 50 \mu \mathrm{~s}$, positive and negative polarity, three times each									

Item	Specification						
Analog outputs	No. of outputs 4 cir	4 circuits					
	Output specifications 4 to 0 Spo Spe	4 to $20 \mathrm{mADC}(550 \Omega$ max.) 0 to $5 \mathrm{~V} / 1$ to 5 V DC (600Ω min.) 0 to 10 V DC ($2 \mathrm{k} \Omega \mathrm{min}$.) 0 to $1 \mathrm{~mA} \mathrm{DC} \mathrm{(10k} \mathrm{\Omega} \mathrm{max)}$. Specify any one of the above.					
	Supported Vol output elements \quadleak V),	Voltage (RS-ST-TR), current (R-S-T), demand current (R-S-T), power, demand power, reactive power, apparent power, power factor, frequency, leakage current, distortion, fundamental wave effective value, 5 th harmonic conversion content rate (automatic switching to maximum phase A or V), 5th harmonic conversion effective value, nth harmonic content rate, nth harmonic effective value (for phases A and V)					
	Response time 1s max	1s max. (time until $\pm 1 \%$ of the last steady value is reached), Harmonic measurement: 10 s max., Current leakage measurement: 2 s max.					
	Output ripple Max	Maximum of 2 x inherent error (\% of output span)					
	Outputs are not isolated (negative common).						
Pulse output* ${ }^{4}$	Power level or reactive power level Output method: Optical MOS-FET SPST-NO relay Contact capacity: AC/DC 125V, 70 mA (resistive load/inductive load) Pulse width: $250 \pm 10 \mathrm{~ms}$ (100 to 130 ms depending on range setting and output pulse unit setting) The output pulse unit can be set in the following ranges. The output pulse unit will not change even if the measurement range is changed. - 3-phase/3-wire, 3-phase/4-wire: Full load power (kW, kvar) $=\sqrt{ } 3 \times$ Rated voltage $(\mathrm{V}) \times$ Rated current $(\mathrm{A}) \times 10-3$ - Single-phase/3-wire: Full load power (kW, kvar) $=2 \times$ Rated voltage $(\mathrm{V}) \times$ Rated current $(\mathrm{A}) \times 10-3$ - Single-phase: Full load power (kW, kvar) = Rated voltage (V) \times Rated current $(\mathrm{A}) \times 10-3$						
	Full load power (kW, kvar)		Output pulse unit (kWh (kvarh)/pulse)				Multiplying factor
	Less than 1		0.1	0.01	0.001	0.0001	$0.01{ }^{* 3}$
	1 min . to less than 10		1	0.1	0.01	0.001	0.1
	10 min . to less than 100		10	1	0.1	0.01	1
	100 min . to less than 1,000		100	10	1	0.1	10
	1,000 min. to less than 10,000		1,000	100	10	1	100
	10,000 min. to less than 100,000		10,000	1,000	100	10	1,000
	100,000 min. to less than 1,000,000		100,000	10,000	1,000	100	10,000
Alarm output *4	Alarm elements: Set any of the following: demand current, demand power, leakage current, 5th harmonic conversion content rate, nth harmonic content rate, distortion, voltage, alarm OFF. Reset method: Automatic reset or manual reset (setting) Contact delay time: 0 to 300 s (1s steps) Output contacts: No-voltage NO (OR output of each phase) Contact capacity: 250V AC 8A, 125V DC 0.3 A (resistive load), 250V AC 2A, 125V DC 0.1 A (inductive load)						
	Alarm elements	Item	Specification				
	Demand current	Function	Alarm display and alarm output when demand measurement value \geq upper-limit set value				
		Setting accuracy	$\pm 1.0 \%$ (\% of full scale)				
		Setting range	5% to 100% of max. scale value (1\% steps)				
	Demand power	Setting accuracy	$\pm 1.0 \%$ (\% of full scale)				
		Setting range	5% to 100% of max. scale value (1\% steps)				
	Leakage current (only with leakage current management)	Sensitive current	Greater than 50% to 100% of rated sensitive current				
		Rated sensitive current	0.03A/0.05A/0.1A/0.2A/0.4A/0.8A				
		Operation time	Time delay type (greater than 0.1 s to 2 s max.)				
		Test function	Detection of leakage current can be tested in test mode.				
	5th harmonic conversion content rate	Function	Alarm display and alarm output (detection at maximum phase) when measurement value \geq Upper-limit set value				
		Setting accuracy	Current: $\pm 2.5 \%$, Voltage: $\pm 1.0 \%$, as percentage of content rate				
		Setting range	Current ${ }^{\text {5th harmonic conversion content rate, nth harmonic }}$		ontent rate ($n=3,4,5,7$, or 15), distortio	5\% to 100\% (1\% steps)
	nth harmonic content rate		Voltage 5 5th harmonic conversion content rate, nth harmonic	5 th harmonic conversion content rate, nth harmonic content rate ($\mathrm{n}=3,4,5,7,9,11,13$, or 15), distortion 5% to 20% (0.1% steps)			
	Distortion	Detection characteristics	Average value mode: Detection when the average measurement value exceeds the setting given above Inverse time limit mode: Detection according to inverse time limit characteristics of instantaneous value (only for 5th harmonic conversion content rate)				
	Voltage	Function	Alarm display and alarm output (detection for maximum phase) when measurement value \geq upper-limit set value Alarm display and alarm output (detection for minimum phase) when measurement value \geq lower-limit set value				
		Setting accuracy	$\pm 1.0 \%$ (with full scale as 150%)				
		Setting range	30% to 150% (1\% steps) with full scale as 150\%				
CPU error $\underset{* 4}{\text { output }}$	Detection item (self-diagnosis item), OR output of detection items			Contact configuration	Capacity		
	(1) Watchdog timer (internal and external), (2) RAM check error, (3) A/D conversion error		OR output of detection items	NC contact	250V AC 5A, 125V DC 0.2 A (resistive load), 250V AC 1.5A (inductive load)		

[^1]| Item | Specification | |
| :---: | :---: | :---: |
| External operation input | No. of inputs | 2 circuits and functions (4 types) switchable using settings |
| | External reset | The alarm output or maximum/minimum value can be reset by adding an external voltage signal. Alarm output reset and maximum/minimum value reset can be switched using settings. The input has the same ratings as the auxiliary power supply. |
| | External display switching | The display can be switched by adding an external voltage signal. Measurement element switching and phase switching can be set. The input has the same ratings as the auxiliary power supply. |
| | Minimum operation pulse width: 300 ms continuous application supported
 (1) $100 / 110 \mathrm{~V}$ AC $0.4 \mathrm{VA}, 200 / 220 \mathrm{~V}$ AC $1.4 \mathrm{VA}, 100 / 110 \mathrm{~V}$ DC 0.4 W , Accepts both AC and DC.
 Contact capacity: Approx. 3mA (100/110V AC/DC), approx. 6mA (200/220V AC)
 (2) 24 V DC $0.3 \mathrm{~W}, 48 \mathrm{~V}$ DC 1.2 W , Contact capacity: Approx. 10 mA (24 V DC), approx. 20 mA (48 V DC) | |
| Vibration and shock resistance
 JIS C 1102-1
 JIS C 0040, 0041 | Vibration: 0.15 mm single amplitude, 10 to 55 Hz , 1 octave per minute for 5 sweeps Shock: $490 \mathrm{~m} / \mathrm{s} 2$, three times each in X, Y, and Z directions | |
| Operating temperature and humidity range | -10 to $55^{\circ} \mathrm{C}, 30 \%$ to 85% RH (no condensation) | |
| Storage temperature range | -25 to $70^{\circ} \mathrm{C}$ | |

- Communications specifications

Communications specification	Item	Specification		
F-MPC Net	Standard	EIA RS-485 (1983)	Cable length	1000m (total length)
	Transmission method	2-wire half-duplex	Address	1 to 99 and not used (Loc)
	Synchronization method	Asynchronous	No. of connectable units	Up to 31 units per system (including other devices)
	Transmission speed	4800/9600/19200bps		
RS-485 communications output	RS-485, 2-wire half-duplex, asynchronous		Cable length	1000m (total length)
	Transmission speed	1200/2400/4800/9600/19200bps	Address	1 to 254 (31 units max. can be connected)
Modbus RTU communications output	Standard	EIA RS-485	Cable length	1000m (total length)
	Synchronization method	Asynchronous	Address	1 to 247 (31 units max. can be connected)
	Transmission speed	4800/9600/19200/38400bps		
CC-Link Ver.1.10	Transmission speed	156k/625k/2.5M/5M/10Mbps	No. of allocated stations	1 remote device station allocated
	Maximum transmission distance	$1200 \mathrm{~m}(156 \mathrm{kbps}) / 900 \mathrm{~m}(625 \mathrm{kbps}) / 400 \mathrm{~m}(2.5 \mathrm{Mbps}) / 160 \mathrm{~m}(5 \mathrm{Mbps}) / 100 \mathrm{~m}(10 \mathrm{Mbps})$		
	No. of connectable units	42 (if only this unit is used)		
AnyWire	Full quadruplex or full duplex total frame cyclic communications			
	Protocol	AnyWireBus protocol	Address settings	0 to 63 (full quadruplex), 0 to 15 (full duplex)
	Transmission speed	Full quadruplex: $7.8 \mathrm{kHz}(1 \mathrm{~km}), 15.6 \mathrm{kHz}(500 \mathrm{~m}), 31.3 \mathrm{kHz}(200 \mathrm{~m}), 62.5 \mathrm{kHz}(100 \mathrm{~m})$ Full duplex: 7.8 kHz (1 km), 31.3 kHz (200 m) The values in parentheses are the maximum overall cable extension lengths.		
	No. of connectable units	Full quadruplex: 64, Full duplex: 16		

- Measurement range

- Voltage measurement range (34 ranges)

- Current display sensitivity: Sets the full scale of the current meter.

The sensitivity can be set to between 40% and 120% of the CT ratio.

- Current measurement range (76 ranges)

\downarrow	\dagger	\downarrow	\downarrow	\dagger	\downarrow	\dagger	\downarrow
5.00A	20.00 A	80.0A	250A	1.00kA	2.00 kA	6.00 kA	15.00kA
6.00A	20.0A	100.0A	300.0 A	1200A	2500A	7500A	15.0kA
7.50A	25.00 A	100A	300A	1.20kA	2.50 kA	7.50 kA	20.00 kA
8.00A	25.0A	120.0A	400A	1500A	3000A	8000A	20.0kA
0.00A	30.00A	120A	500A	1.50 kA	3.00 kA	8.00 kA	30.00 kA
10.0A	30.0A	150.0A	600A	1600A	4000A	9.00 kA	30.0kA
2.00A	40.0A	150A	750A	1.60kA	4.00kA	10.00kA	
12.0A	50.0A	200.0A	800A	1800A	5000A	10.0kA	
5.00 A	60.0A	200A	900A	1.80kA	5.00kA	12.00 kA	
5.0A	75.0A	250.0A	1000A	2000A	6000A	12.0kA	
\llcorner				L			

- Power (apparent power range)

480W to 1000MW range selection, maximum scale setting 40 to 115%

- Reactive power

LEAD, LAG360var to 1000Mvar range selection, maximum scale setting 30\% to 115\%

- Power factor

LEAD0. 5 to 1 to LAG0. 5 or LEADO to 1 to LAG0 range selection

- Frequency

45 to 55 Hz or 55 to $65 \mathrm{~Hz}, 45$ to 65 Hz range selection

■ Part names and functions

Bar graph display

Analog display of measurement value on
main monitor
(Settings can be made for bar graph display of the measurement value on the sub-monitor.)

Scale numbers
This is automatically set using the measurement range setting.
Upper limit or lower limit setting index
This displays the set value of the upper limit or lower limit.
Four elements can be measured and monitored at the same time.

- Main monitor
- Sub-monitor on right
- Sub-monitor in center
- Sub-monitor on left \qquad

SET
This switch is used to toggle between a normal display (five integer digits) and an expanded display (two integer digits and three digits below the decimal point) for the total value of each power level.
After the display is switched, it will return to a normal display if there is no operation for 10 minutes. The switch can also be used to switch into setting mode. When the switch is pressed for 3 s or longer, the mode will switch to setting mode.
In setting mode, the switch is used to enter set values.

RESET/

SHIFT

Use this switch to reset alarms
The switch can also be used to reset maximum and minimum values for display of maximum and minimum measurements.
In setting mode, the switch is used to move between setting items.

Switchboard Instruments

Power line multi-meters

■ Wiring diagrams

- Single-phase/2-wire, Single-phase/3-wire, 3-phase/3-wire *4
(1) Single-phase, 2-wire

(3) 3-phase, 3-wire (2VT, 2CT)

(5) Current input 3-phase, 3-wire (2CT)

(2) Single-phase, 3-wire

(4) 3-phase, 3-wire (2VT, 3CT)

(6) Current input 3-phase, 3-wire (3CT)

(11) Voltage input Single-phase, 2-wire

Notes:
${ }^{* 1}$ Analog outputs, contact outputs, and external operation inputs are options.
${ }^{* 2}$ Functionality for external operation input can be switched between external reset and external display switching by using settings.
${ }^{* 3}$ For contact outputs, you can select from the following:
pulse outputs, alarm outputs, or CPU error output. (by user specification)
${ }^{*}$ Secondary grounding for VT and CT is not required if a low-voltage circuit is used. Also, VT is not required if 110 V or 220 V direct input is used.

Switchboard Instruments

Power line multi-meters

- Wiring for monitoring leakage current of low-voltage circuit
(1) Single-phase, 3-wire (N-phase ground)

(2) 3-phase, 3-wire (S-phase ground)

(3) 3-phase, 3-wire (no ground)

Notes:
${ }^{* 1}$ Analog outputs, contact outputs, and external operation inputs are options.
Models with zero-phase current input have only leakage current measurement.
${ }^{* 2}$ Functionality for external operation input can be switched between external
reset and external display switching by using settings.
${ }^{* 3}$ For contact outputs, you can select from the following:
pulse outputs, alarm outputs, or CPU error output. (by user specification)
${ }^{*}$ Secondary grounding for VT and CT is not required if a low-voltage circuit is used.
Also, VT is not required if 110 V or 220 V direct input is used.
${ }^{* 5}$ Voltage input is required when leakage current Igr is used.

- 3-phase, 4-wire *4
(1) Voltage and current input (2VT, 3CT)

(5) Voltage input (3VT)

(4) Voltage input (2VT)

Notes:
${ }^{* 1}$ Analog outputs, contact outputs, and external operation inputs are options.
${ }^{* 2}$ Functionality for external operation input can be switched between external reset and external display switching by using settings.
${ }^{* 3}$ For contact outputs, you can select from the following:
pulse outputs, alarm outputs, or CPU error output. (by user specification)
${ }^{* 4}$ Secondary grounding for VT and CT is not required if a low-voltage circuit is used. Also, VT is not required if 110 V or 220 V direct input is used.

Switchboard Instruments

Power line multi-meters

- Communications output terminal arrangement

(1) F-MPC Net
(2) RS-485, Modbus RTU
(3) CC-Link
(4) AnyWire

* Terminal resistance is connected internally by
shorting terminal 17 (DXB) and terminal 19 (Ter)
(Connect the terminal resistance only on a device
that is the terminal node in the connection configuration.)
- Mounting ZCT to ground wire (Be careful of ZCT polarity.) *4
(1) Single-phase, 3-wire (N-phase ground)

(2) 3-phase, 3-wire (S-phase ground)

Notes:
${ }^{* 1}$ Analog outputs, contact outputs, and external operation inputs are options.
Models with zero-phase current input have only leakage current measurement.
${ }^{\text {*2 }}$ Functionality for external operation input can be switched between external
reset and external display switching by using settings.
${ }^{*}$ For contact outputs, you can select from the following:
pulse outputs, alarm outputs, or CPU error output. (by user specification)
${ }^{*}$ Secondary grounding for VT and CT is not required if a low-voltage circuit is used.
Also, VT is not required if 110 V or 220 V direct input is used.

- Contact output combinations

	Contact output combinations				
	Pulse + alarm	Alarm $\times 2$	Pulse $\times 2$	Pulse + CPU error	Alarm + CPU error
Contact output 1	Pulse output	Alarm output 1	Pulse output 1	Pulse output	Alarm output
Contact output 2	Alarm output	Alarm output 2	Pulse output 2	CPU error output	CPU error output

■ Dimensions and mounting precautions

- Dimensions, mm

- Mounting precautions

(1) The contrast of the LCD display depends on the angle at which it is viewed. Mount the display at the proper angle and position.

Upper mounting

Lower mounting

(2) Use a mounting panel with a thickness of 10 mm max. and mount the unit to the panel using the enclosed M5 nuts.
(3) Use a tightening torque of 2.75 to $3.82 \mathrm{~N} \cdot \mathrm{~m}$.

Switchboard Instruments

Power line multi-meters

■ ZCT dimensions, mm
(The following ZCT is used when enclosed.)
50A (Type: OTG-LA21)

Mounting hole dimensions

200A (Type: OTG-LA42)

600A (Type: OTG-LA82)

F-type panel instruments
 60 mm to 120 mm square

■ Description

The F-type is both small in size and budget-priced. Since they take a minimum of installation space they are best suited for motor starter, control center and distribution board applications. Meter cases are made of a highly attractive and durable plastic.

Features

- Accuracy class: 2.5
- Meter scales are easy to read without error
- Compact design and budget-priced
- Meter accuracy is not affected by panel materials or adjacent currentcarrying conductors
- Complies with requirements of JIS C1102
- Dielectric test: 3320V AC, 5 sec

Meter	Description		60mm square Type	80mm square Type	100mm square Type	120 mm square Type
AC ammeter	For direct connection (up to 500V) Measuring range Extended range For connection to CT Measuring range Extended range $0-X(A) \quad 0-X-3 X$ CT ratio: X/5 (X: CT primary current)	- Operating principle: Moving iron - Power consumption: 1VA - Operating principle: Moving iron - Power consumption: 1VA	FSN-60	FSN-80	FSN-100	FSN-120
	For direct connection (up to 500V) Measuring range $\begin{array}{ll} 0-100 \mu \mathrm{~A} & 0-40 \mathrm{~mA} \\ 0-500 \mu \mathrm{~A} & 0-50 \mathrm{~mA} \\ 0-1 \mathrm{~mA} & 0-60 \mathrm{~mA} \\ 0-3 \mathrm{~mA} & 0-75 \mathrm{~mA} \\ 0-5 \mathrm{~mA} & 0-100 \mathrm{~mA} \\ 0-10 \mathrm{~mA} & 0-150 \mathrm{~mA} \\ 0-20 \mathrm{~mA} & 0-200 \mathrm{~mA} \\ 0-25 \mathrm{~mA} & 0-250 \mathrm{~mA} \\ 0-30 \mathrm{~mA} & 0-300 \mathrm{~mA} \\ \hline \end{array}$ For connection to MR-CTN Measuring range $\begin{array}{ll} 0-400 \mathrm{~mA} & 0-1 \mathrm{~A} \\ 0-500 \mathrm{~mA} & 0-2 \mathrm{~A} \\ 0-600 \mathrm{~mA} & 0-2.5 \mathrm{~A} \\ 0-750 \mathrm{~mA} & 0-3 \mathrm{~A} \end{array}$	- Operating principle: Rectifier - Power consumption: 1VA - Operating principle: Rectifier - Power consumption: 1VA	FRN-60	FRN-80	FRN-100	FRN-120
AC voltmerter	For direct connection Measuring range $\begin{aligned} & 0-150 \mathrm{~V} \\ & 0-300 \mathrm{~V} \\ & 0-600 \mathrm{~V} \text { Series resistor to be mounted externally } \\ & \hline \end{aligned}$ For connection to VT Measuring range $\begin{aligned} & 0-600 \mathrm{~V} \\ & 0-4.5 \mathrm{kV} \\ & 0-9 \mathrm{kV} \end{aligned}$	- Operating principle: Moving iron - Power consumption $\begin{aligned} & 0-150 \mathrm{~V}, 0-300 \mathrm{~V}: 5 \mathrm{VA} \\ & 0-600 \mathrm{~V}: 10 \mathrm{VA} \end{aligned}$ - Operating principle: Moving iron - Power consumption: 5VA	FSN-60	FSN-80	FSN-100	FSN-120

Panel Instruments
F type

Meter	Description		60 mm square Type	80 mm square Type	100mm square Type	120 mm square Type
$\overline{\text { AC voltmerter }}$	For direct connection Measuring range $0-10 \mathrm{~V}$ $0-60 \mathrm{~V}$ $0-15 \mathrm{~V}$ $0-75 \mathrm{~V}$ $0-20 \mathrm{~V}$ $0-100 \mathrm{~V}$ $0-25 \mathrm{~V}$ $0-150 \mathrm{~V}$ $0-30 \mathrm{~V}$ $0-200 \mathrm{~V}$ $0-40 \mathrm{~V}$ $0-250 \mathrm{~V}$ $0-50 \mathrm{~V}$ $0-300 \mathrm{~V}$	- Operating principle: Rectifier - Internal resistance: $1000 \Omega / \mathrm{V}$	FRN-60	FRN-80	FRN-100	FRN-120
$\overline{\text { DC ammerter }}$	For direct connection Measuring range $0-1 m \mathrm{~m}$ $0-200 \mathrm{~mA}$ $0-10 \mathrm{~A}$ $0-3 \mathrm{~mA}$ $0-500 \mathrm{~mA}$ $0-15 \mathrm{~A}$ $0-5 \mathrm{~mA}$ $0-1 \mathrm{~A}$ $0-20 \mathrm{~A}$ $0-10 \mathrm{~mA}$ $0-1.5 \mathrm{~A}$ $0-30 \mathrm{~A}$ $0-20 \mathrm{~mA}$ $0-2 \mathrm{~A}$ $0-50 \mathrm{~mA}$ $0-3 \mathrm{~A}$ $0-100 \mathrm{~mA}$ $0-5 \mathrm{~A}$ For connection to shunt Measuring range $\begin{array}{ll} 0-50 A & 0-300 A \\ 0-75 A & 0-500 A \\ 0-100 A & 0-X(A) \\ 0-200 A & \end{array}$	- Operating principle: Moving coil - Operating principle: Moving coil - Shunt rating: 60 mV	FMN-60	FMN-80	FMN-100	FMN-120
$\overline{\text { DC voltmerter }}$	For direct connection Measuring range $\left[\begin{array}{ll} 0-1 \mathrm{~V} & 0-50 \mathrm{~V} \\ 0-3 \mathrm{~V} & 0-75 \mathrm{~V} \\ 0-5 \mathrm{~V} & 0-100 \mathrm{~V} \\ 0-10 \mathrm{~V} & 0-150 \mathrm{~V} \\ 0-15 \mathrm{~V} & 0-300 \mathrm{~V} \\ 0-30 \mathrm{~V} & \end{array}\right.$ For connection to series resistor Measuring range $\begin{aligned} & 0-500 \mathrm{~V} \\ & 0-600 \mathrm{~V} \\ & 0-750 \mathrm{~V} \\ & 0-1 \mathrm{kV} \\ & 0-1.5 \mathrm{kV} \\ & 0-2 \mathrm{kV} \end{aligned}$	 - Operating principle: Moving coil - Series resistor: Internal Internal resistance: $1 \mathrm{~V}: 1 \Omega$ $50 \mathrm{~V}: 50 \Omega$ $3 \mathrm{~V}: 3 \Omega$ $75 \mathrm{~V}: 75 \Omega$ $5 \mathrm{~V}: 5 \Omega$ $10 \mathrm{~V}: 100 \Omega$ $10 \mathrm{~V}: 10 \Omega$ $150 \mathrm{~V}: 150 \Omega$ $15 \mathrm{~V}: 15 \Omega$ $300 \mathrm{~V}: 300 \Omega$ $30 \mathrm{~V}: 30 \Omega$ \bullet Operating principle: Moving coil - Series resistor: Internal 500V: 500Ω 600V: 600Ω - Series resistor: External (3-termimal) 750V ~ 2kV	FMN-60	FMN-80	FMN-100	FMN-120
Single-phase 2-wire wattmeter	For connection to VT and CT Measuring range $\begin{aligned} & 0-\mathrm{ZkW} \\ & \mathrm{Z}=0.5 \times \mathrm{X} / 5 \times \mathrm{Y} / 110 \end{aligned}$ Z: kWatt X : CT primary current Y:VT primary voltage	- Operating principle: Power/DC transducing type Power consumption Current coil: 1VA (at 5A) Voltage coil: 3.5VA	FRN-60W1	FRN-80W1	FRN-100W1	FRN-120W1
3-phase 3 -wire wattmeter	For connection to VT and CT Measuring range $\begin{aligned} & 0-Z k W \\ & Z=0.5 \times X / 5 \times Y / 110 \end{aligned}$ Z: kWatt X: CT primary current Y:VT primary voltage	- Operating principle: Power/DC transducing type Power consumption Current coil: 1VA (at 5A) Voltage coil: 3.5VA	FRN-60W3	FRN-80W3	FRN-100W3	FRN-120W3
3-phase 3-wire varmeter	For connection to VT and CT Measuring range $\begin{aligned} & 0-Z k v a r \\ & Z=0.5 \times \mathrm{X} / 5 \times \mathrm{Y} / 110 \end{aligned}$ Z: kvar X: CT primary current Y:VT primary voltage	- Operating principle: Power/DC transducing type Power consumption Current coil: 1VA (at 5A) Voltage coil: 3.5VA	FRN-60VR3	FRN-80VR3	FRN-100VR3	FRN-120VR3

Meter	Description		60mm square Type	80mm square Type	100 mm square Type	120 mm square Type
3-phase 3-wire power factor meter (for balanced circuit	For connection to VT and CT Measuring range Lead 0.5-1-0.5Lag VT ratio $=\mathrm{Y} / 110 \mathrm{~V}$ CT ratio $=\mathrm{X} / 5 \mathrm{~A}$	- Operating principle: Power/DC transducing type Power consumption Current coil: 1VA Voltage coil: 1VA	FR-60PF3	FR-80PF3	FR-100PF3	FR-120PF3
Frequency meter	Measuring range $44-55 \mathrm{~Hz} 110$ or 220 V $55-65 \mathrm{~Hz} 110$ or 220 V $45-65 \mathrm{~Hz} 110$ or 220 V	- Operating principle: Power/DC transducing type (built-in) Power consumption 1.7 VA at 110 V 2.5VA at 220 V	FRN-60F	FRN-80F	FRN-100F	FRN-120F

■ Type number nomenclature (Ordering code)

S: Moving iron type
M: Moving coil type
R: Rectifier type

Front frame

60: 60mm square
80: 80 mm square
100: 100 mm square
120: 120 mm square

Categoly
Blank: Ammerter or Voltmeter
W1: Single-phase, 2-wire wattmeter
W2: Single-phase, 3-wire wattmeter
W3: 3-phase, 3-wire wattmeter
W4: 3-phase, 4-wire wattmeter
VR1: Single-phase, 2-wire varmeter
VR3: 3-phase, 3-wire varmeter
VR4: 3-phase, 4-wire varmeter
PF1: Single-phase 2-wire power factor meter
PF3: 3-phase, 3-wire power factor meter (balanced circuit)
PFU: 3-phase, 3-wire power factor meter (unbalanced circuit)
PF4: 3-phase, 3-wire power factor meter (unbalanced circuit)
F: Frequency meter

■ Ordering information

Specify the following:

1. Type number (Ordering code)
2. Measuring range
3. Supply voltage and frequency
4. Connection (When connecting to VT or CT, specify VT ratio or CT ratio)

Panel Instruments

F type

■ Dimensions, mm

AC/DC ammerter, AC/DC voltmeter

- Rectifier type

Type	A	B	C	D	E	F1	F2	G1	G2	K
Mass (g)										
FRN \cdot FMN-60	48	60	14.5	37.5	10	$\varnothing 52$	$\varnothing 54$ hole	M3 screw	$\varnothing 4$ hole	6
90										
FRN \cdot FMN-80	64	80	14.5	37.5	10	$\varnothing 65$	$\varnothing 67$ hole	M3 screw	$\varnothing 4$ hole	0
FRN \cdot FMN-100	80	100	16	39	15	$\varnothing 85$	$\varnothing 87$ hole	M4 screw	$\varnothing 5.5$ hole	0
FRN \cdot FMN-120	100	123	20	49.5	15	$\varnothing 110$	$\varnothing 112$ hole	M5 screw	$\varnothing 7$ hole	0

- Moving iron type

Type	A	B	C	D	E	F1	F2	G1	G2	Mass (g)	
FSN-60	48	60	14.5	47.5	10	$\varnothing 52$	$\varnothing 54$ hole	M3 screw	$\varnothing 4$ hole	6	130
FSN-80	64	80	14.5	47.5	10	$\varnothing 65$	$\varnothing 67$ hole	M3 screw	$\varnothing 4$ hole	0	165
FSN-100	80	100	16	49.5	15	$\varnothing 85$	$\varnothing 87$ hole	M4 screw	$\varnothing 5.5$ hole	15	260
FSN-120	100	123	20	49.5	15	$\varnothing 110$	$\varnothing 112$ hole	M5 screw	$\varnothing 7$ hole	24	370

$60 / 80 \mathrm{~mm}$ square type

Wattmeter / Varmeter

Type	A	B	C	D	E	F1	F2	G1	G2	K	Mass (g)
$\mathrm{F} \square \mathrm{N}-60$	48	60	14.5	37.5	10	$\varnothing 52$	$\varnothing 54$ hole	M3 screw	$\varnothing 4$ hole	6	130
$\mathrm{~F} \square \mathrm{~N}-80$	64	80	14.5	37.5	10	$\varnothing 65$	$\varnothing 67$ hole	M3 screw	$\varnothing 4$ hole	0	165

■ Dimensions, mm
100 mm square type
Wattmeter / Varmeter / 3-phase, 3-wire power factor meter

Panel cutting

120mm square type
Wattmeter / Varmeter / 3-phase, 3-wire power factor meter

Series resistor for AC/DC voltmeter

DM-1 (for 750 V to 1 kV)

Mass: 50 g
DM-5 to 25 (for 3 to $\mathbf{2 5 k V}$)

Type	Rating	a	b	c	d	e	f	g	h	Mass
DM-5	3 to 5 kV	170	120	110	154	170	140	106	4	1.0 kg or less
DM-10	6 to 10 kV	220	160	140	194	210	140	106	4	1.5 kg or less
DM-15	12 to 15kV	290	210	200	248	264	190	146	5	2.0 kg or less
DM-20	20 kV	390	260	300	294	310	220	176	5	3.0 kg or less
DM-25	25 kV	500	330	400	356	372	280	236	5	3.5 kg or less

Panel Instruments

F type

■ Dimensions, mm

DC converter

- For Singe-phase, 2-wire wattmeter
- For 3-phase, 3-wire power factor meter (balanced circuit)

CT for AC ammeter

- For 3-phase, 3-wire wattmeter meter
- For 3-phase, 3-wire varmeter

Frequency meter

Type	A	B	C	D	E	F1	F2	G1	G2	K	Mass (g)
FRN-60F	48	60	14.5	74	10	$\varnothing 52$	$\varnothing 54$	M3 screw	$\varnothing 4$	6	150
FRN-80F	64	80	14.5	74	10	$\varnothing 65$	$\varnothing 67$	M3 screw	$\varnothing 4$	0	180
FRN-100F	80	100	16	75.5	15	$\varnothing 85$	$\varnothing 87$	M4 screw	$\varnothing 5.5$	0	300
FRN-120F	100	123	20	86	15	$\varnothing 110$	$\varnothing 112$	M5 screw	$\varnothing 7$	0	420

■ Wiring diagrams

Ammeter, voltmeter

voltmete (For connection to series resistor)

AC voltmeter
(For connection to series resistor (DM1))

AC voltmeter

Panel Instruments

F type

■ Wiring diagrams

Wattmeter

- FRN-60W1, FRN-80W1

- FRN-60W3, FRN-80W3

- FRN-100W3, FRN-120W3

- FRN-100VR3, FRN-120VR3

- FRN-100PF3, FRN-120PF3

■ Wiring diagrams

Frequency meter

 (For direct connection)
(For connection to VT)

Transducers

C series

C series transducers

- Description

FUJI C series transducers are designed to convert various electrical characteristics of circuits into DC signals. Input and output circuits are isolated from each other. These transducers are ideal for handling the analog data input of microcomputer-incorporated control devices. Distorted waveforms from electronic power control devices can be accurately converted to DC signals with the innovative conversion methods used. (The r.m.s.-value method for voltage and current conversion, time-division multiplication for power conversion and differential method for frequency conversion.)

Features

- Superb-quality, high-reliability design
- Complete isolation between input and output
- Strong construction
- Provided with terminal protective covers

■ Specifications and types

- AC voltage and current transducers/CAC

Accuracy: 0.5\%

Response time: $\quad 1.3$ s or less
Insulation resistance: $100 \mathrm{M} \Omega, 500 \mathrm{~V}$ megger
Dielectric strength: 2000 V AC, 1 min . between input and output circuits, between input circuit and power supply 2000 V AC, 1 min . between output circuit and power supply, output circuit and case (earth terminals)
Ambient temperature and humidity: -10 to $+50^{\circ} \mathrm{C}, 90 \%$ RH or less (no condensation)

Note: * Replace the marks $\square \square \mathbf{\Delta}$ in the type number by codes indicated in parenthesis.

Input-output	
Input	Output
$0-1 \mathrm{~A}$	$1-5 \mathrm{~V}$
$0-5 \mathrm{~A}$	$4-20 \mathrm{~mA}$
$0-150 \mathrm{~V}$	
$0-300 \mathrm{~V}$	

Input-output	
Input	Output
$0-1 \mathrm{~A}$	$0-5 \mathrm{~V}$
$0-5 \mathrm{~A}$	$0-10 \mathrm{~V}$
$0-150 \mathrm{~V}$	
$0-300 \mathrm{~V}$	

- Frequency transducers/CF1

Accuracy:
0.5\%

Response time: 1 s or less
Insulation resistance: $100 \mathrm{M} \Omega$ or more, 500 V megger
Dielectric strength: 2000 V AC, 1 min. between input and output circuits, between input circuit and power supply 2000 V AC, 1 min . between output circuit and power supply, output circuit and case (earth terminals)
Ambient temperature and humidity: -10 to $+50^{\circ} \mathrm{C}, 90 \%$ RH or less (no condensation)

Input		Output (DC) (Load resistance)			Control power supply (${ }^{\text {a }}$	Type	
Voltage and frequency (\square)	Power consumption						
$110 \mathrm{~V} 45 \mathrm{~Hz}-110 \mathrm{~V} 55 \mathrm{~Hz}(115)$ $110 \mathrm{~V} 55 \mathrm{~Hz}-110 \mathrm{~V} 65 \mathrm{~Hz}(116)$ $220 \mathrm{~V} 45 \mathrm{~Hz}-220 \mathrm{~V} 55 \mathrm{~Hz}(225)$ $220 \mathrm{~V} 55 \mathrm{~Hz}-220 \mathrm{~V} 65 \mathrm{~Hz}(226)$	0.3 VA	$\begin{aligned} & \hline 1-5 \mathrm{~V} \\ & 0-5 \mathrm{~V} \\ & 0-10 \mathrm{~V} \\ & 4-20 \mathrm{~mA} \\ & 0-1 \mathrm{~mA} \\ & 0-5 \mathrm{~mA} \end{aligned}$	($1 \mathrm{k} \Omega$ or more) ($1 \mathrm{k} \Omega$ or more) ($2 \mathrm{k} \Omega$ or more) (600Ω or less) (10k Ω or less) ($2 \mathrm{k} \Omega$ or less)		$\begin{aligned} & \hline \text { (A) } \\ & \text { (B) } \\ & \text { (C) } \\ & \text { (H) } \\ & \text { (J) } \\ & \text { (K) } \end{aligned}$	100/110V AC $50 / 60 \mathrm{~Hz}$ (1) or 200/220V AC $50 / 60 \mathrm{~Hz}$ (2) 24V DC $\pm 10 \%$ (3) None (9) Approx. power consumption 2.1VA	CF1- \square -

Note: *Replace the marks $\square \square \bullet \mathbf{\Delta}$ in the type number by codes indicated in parenthesis.

- Active and reactive power transducers/CW, CR

Accuracy:

0.5\%

Response time: $\quad 0.5 \mathrm{~s}$ or less
Insulation resistance: $100 \mathrm{M} \Omega, 500 \mathrm{~V}$ megger
Dielectric strength: $\quad 2000 \mathrm{~V}$ AC, 1 min . between input and output circuits, between input circuit and power supply
2000 V AC, 1 min . between output circuit and power supply, output circuit and case (earth terminals)
Ambient temperature and humidity: -10 to $+50^{\circ} \mathrm{C}, 90 \% \mathrm{RH}$ or less (no condensation)

Description		Input (AC)						Output (DC) Load resistance		Control ($\mathbf{\Delta}$) power supply	Type *
Active or reactive power	Circuit	Voltag	Current	Power (\square)	Frequency	Power consumpt Voltage	ion Current				
Active power	Single phase 2-wire	$\begin{aligned} & 110 \mathrm{~V} \\ & 110 \mathrm{~V} \\ & 220 \mathrm{~V} \\ & 220 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1 A \\ & 5 A \\ & 1 A \\ & 5 A \end{aligned}$	$\begin{array}{ll} 0-100 \mathrm{~W} & (11) \\ 0-500 \mathrm{~W} & (15) \\ 0-200 \mathrm{~W} & (21) \\ 0-1 \mathrm{~kW} & (25) \tag{2} \end{array}$	50 Hz (5) or 60 Hz (6)	Approx. Approx. 0.35 VA 0.2 VA $(110 \mathrm{~V})$ $(5 \mathrm{~A})$		1-5V ($1 \mathrm{k} \Omega$ or more) 0-5V ($1 \mathrm{k} \Omega$ or more) $-5-0-+5 \mathrm{~V}$ ($1 \mathrm{k} \Omega$ or more) $0-10 \mathrm{~V}$ ($2 \mathrm{k} \Omega$ or more) 4-20mA (600Ω or less) $0-1 \mathrm{~mA}$ (10k Ω or less) $0-5 \mathrm{~mA}$	(A) (B) (S) (C)	$\begin{aligned} & 100 / 110 \mathrm{~V} \\ & 50 / 60 \mathrm{~Hz} \\ & \\ & 200 / 220 \mathrm{~V} \\ & 50 / 60 \mathrm{~Hz} \\ & 50 \end{aligned}$	CW1- \square - ${ }^{\text {- }}$
	3-phase 3-wire	$\begin{align*} & 110 \mathrm{~V} \\ & 110 \mathrm{~V} \tag{3}\\ & 220 \mathrm{~V} \\ & 220 \mathrm{~V} \end{align*}$	$\begin{aligned} & 1 A \\ & 5 A \\ & 1 A \\ & 5 A \end{aligned}$	$\begin{array}{ll} 0-200 \mathrm{~W} & (11) \\ 0-1 \mathrm{~kW} & (15) \\ 0-400 \mathrm{~W} & (21) \\ 0-2 \mathrm{~kW} & (25) \end{array}$	50 Hz (5) or 60 Hz (6)	$\begin{array}{\|ll} \hline \text { Approx. } & \text { Approx. } \\ 2 \times 0.35 \mathrm{VA} & 2 \times 0.2 \mathrm{VA} \\ (110 \mathrm{~V}) & (5 \mathrm{~A}) \end{array}$			(C) (H)	$24 \mathrm{~V} D \mathrm{D} \pm 10 \%$ $110 \mathrm{~V} D \mathrm{E} \pm 10 \%$ Except CW4(4) None (9)	CW3- \square - ${ }_{\text {- }}$
	3-phase 4-wire	$\begin{aligned} & 110 \mathrm{~V} \\ & 110 \mathrm{~V} \\ & 220 \mathrm{~V} \\ & 220 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1 A \\ & 5 A \\ & 1 A \\ & 5 A \end{aligned}$	$\begin{array}{ll} 0-200 \mathrm{~W} & (11) \\ 0-1 \mathrm{~kW} & (15) \\ 0-400 \mathrm{~W} & (21) \\ 0-2 \mathrm{~kW} & (25) \end{array}$	50 Hz (5) or 60 Hz (6)	$\begin{array}{\|ll} \text { Approx. } & \text { Approx. } \\ 3 \times 0.35 \mathrm{VA} & 3 \times 0.2 \mathrm{VA} \\ (110 \mathrm{~V}) & (5 \mathrm{~A}) \end{array}$			(K)	Approx. power consumption CW1: 1.8VA CW3: 1.9VA CW4: 2VA	CW4- \square -
Reactive power	Single phase 2-wire	$\begin{aligned} & 110 \mathrm{~V} \\ & 110 \mathrm{~V} \\ & 220 \mathrm{~V} \\ & 220 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1 A \\ & 5 A \\ & 1 A \\ & 5 A \end{aligned}$	$\begin{aligned} & \text { 0-100var (11) } \\ & 0-500 \mathrm{var}(15) \\ & 0-200 \mathrm{var}(21) \\ & 0-1 \mathrm{kvar} \end{aligned}$	50 Hz or 60 Hz (5)	$\begin{array}{\|ll} \hline \text { Approx. } & \text { Approx. } \\ 0.35 \mathrm{VA} & 0.2 \mathrm{VA} \\ (110 \mathrm{~V}) & (5 \mathrm{~A}) \end{array}$		1-5V ($1 \mathrm{k} \Omega$ or more) $0-5 \mathrm{~V}$ ($1 \mathrm{k} \Omega$ or more) $-5-0-+5 \mathrm{~V}$ ($1 \mathrm{k} \Omega$ or more) $0-10 \mathrm{~V}$ ($2 \mathrm{k} \Omega$ or more) $4-20 \mathrm{~mA}$ (600Ω or less) $0-1 \mathrm{~mA}$ (10k Ω or less) $0-5 \mathrm{~mA}$ (2k Ω or less)	(A) (B) (S) (C)	$\begin{aligned} & 100 / 110 \mathrm{VAC} \\ & 50 / 60 \mathrm{~Hz} \\ & \text { 200/220V AC } \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	CR1- \square - ${ }^{\text {- }}$
	3-phase 3-wire	$\begin{align*} & 110 \mathrm{~V} \\ & 110 \mathrm{~V} \tag{3}\\ & 220 \mathrm{~V} \\ & 220 \mathrm{~V} \end{align*}$	$\begin{aligned} & 1 A \\ & 5 A \\ & 1 A \\ & 5 A \end{aligned}$	$\begin{aligned} & 0-200 \mathrm{var}(11) \\ & 0-1 \mathrm{kvar} \\ & \text { 0-400var (21) } \\ & 0-2 \mathrm{kvar} \end{aligned}$	50 Hz or (5) 60 Hz (6)	$\begin{array}{\|ll} \text { Approx. } & \text { Approx. } \\ 2 \times 0.35 \mathrm{VA} & 2 \times 0.2 \mathrm{VA} \\ (110 \mathrm{~V}) & (5 \mathrm{~A}) \end{array}$				$24 \mathrm{~V} D \mathrm{E} \pm 10 \%$ None (9)	CR3- \square - ${ }^{\text {- }}$
	3-phase 4-wire	$\begin{aligned} & 110 \mathrm{~V} \\ & 110 \mathrm{~V} \\ & 220 \mathrm{~V} \\ & 220 \mathrm{~V} \end{aligned}$	$1 A$ $5 A$ $1 A$ 1A	$\begin{aligned} & 0-200 \mathrm{var}(11) \\ & 0-1 \mathrm{kvar} \\ & \text { 0-400var (21) } \\ & 0-2 \mathrm{kvar} \end{aligned}$	50 Hz (5) or 60 Hz (6)	Approx. $3 \times 0.35 \mathrm{VA}$ (110V)	Approx. $3 \times 0.2 \mathrm{VA}$ (5A)		(K)	Approx. power consumption CR1: 1.8VA CR3: 1.9VA CR4: 2.0VA	CR4- \square - ${ }^{\text {- }}$

Note: * Replace the marks \square ■ $\boldsymbol{\Delta}$ in the type number by codes indicated in parenthesis.

Input-output	
Input	Output
$0-100 \mathrm{~W} \cdot \mathrm{var}$	$0-5 \mathrm{~V}$
$0-200 \mathrm{~W} \cdot \mathrm{var}$	$0-10 \mathrm{~V}$
$0-400 \mathrm{~W} \cdot \mathrm{var}$	$0-1 \mathrm{~mA}$
$0-500 \mathrm{~W} \cdot \mathrm{var}$	$0-5 \mathrm{~mA}$
$0-1 \mathrm{~kW} \cdot \mathrm{kvar}$	
$0-2 \mathrm{~kW} \cdot \mathrm{kvar}$	

Input-output

Input	Output
$0-100 \mathrm{~W} \cdot \mathrm{var}$	$-5-0-+5 \mathrm{~V}$
$0-200 \mathrm{~W} \cdot \mathrm{var}$	
$0-400 \mathrm{~W} \cdot \mathrm{var}$	
$0-500 \mathrm{~W} \cdot \mathrm{var}$	
$0-1 \mathrm{~kW} \cdot \mathrm{kvar}$	
$0-2 \mathrm{~kW} \cdot \mathrm{kvar}$	

Input-output

Input-output	
Input	Output
$0-100 \mathrm{~W} \cdot \mathrm{var}$	$1-5 \mathrm{~V}$
$0-200 \mathrm{~W} \cdot \mathrm{var}$	$4-20 \mathrm{~mA}$
$0-400 \mathrm{~W} \cdot \mathrm{var}$	
$0-500 \mathrm{~W} \cdot \mathrm{var}$	
$0-1 \mathrm{~kW} \cdot \mathrm{kvar}$	
$0-2 \mathrm{~kW} \cdot \mathrm{kvar}$	

- Power factor transducers/CC

Accuracy: 3.0\%
Response time: $\quad 0.7 \mathrm{~s}$ or less
Insulation resistance: $100 \mathrm{M} \Omega$ or more, 500 V megger
Dielectric strength: 2000 V AC, 1 min. between input and output circuits, between input circuit and power supply 2000 V AC, 1 min . between output circuit and power supply, output circuit and case (earth terminals)
Ambient temperature and humidity: -10 to $+50^{\circ} \mathrm{C}, 90 \%$ RH or less (no condensation)

Description		Input (AC)				Output (DC) (Load resistance	Control (\mathbf{A}) power supply	Type
Power factor	Circuit	Voltage Current (\square)	Power factor (■)	Frequency	Power consumption Voltage Current			
	Single phase 2-wire	$110 V$ $1 A$ (11) 110 V 5 A (15) 220 V 1 A (21) 220 V 5 A (25)	$\begin{gather*} \text { LEAD } \tag{B}\\ 0.5-1-0.5 \tag{5}\\ 0-1-0 \end{gather*}$	$50 / 60 \mathrm{~Hz}$	Approx. Approx. 0.35 VA 0.25 VA $(110 \mathrm{~V})$ $(5 \mathrm{~A})$	$\begin{align*} & 1-5 \mathrm{~V} \\ & (1 \mathrm{k} \Omega \text { or more }) \\ & 0-5 \mathrm{~V} \\ & (1 \mathrm{k} \Omega \text { or more }) \tag{S}\\ & -5-0-+5 \mathrm{~V} \tag{0} \end{align*}$ (A)	$\begin{array}{ll} 100 / 110 \mathrm{VAC} \\ 50 / 60 \mathrm{~Hz} & \text { (1) } \\ 200 / 220 \mathrm{~V} & \\ 50 / 60 \mathrm{~Hz} & \text { (2) } \end{array}$	CC1- \square - ${ }^{\text {- }}$
	3-phase 3-wire	$110 V$ $1 A$ (11) $110 V$ $5 A$ (15) $220 V$ $1 A$ (21) $220 V$ $5 A$ (25)			$\begin{array}{ll} \text { Approx. } & \text { Approx. } \\ 2 \times 0.35 \mathrm{VA} & 2 \times 0.25 \mathrm{VA} \\ (110 \mathrm{~V}) & (5 \mathrm{~A}) \end{array}$	$\begin{aligned} & \begin{array}{l} 0-10 \mathrm{~V} \\ (2 \mathrm{k} \Omega \text { or more) } \\ 4-20 \mathrm{~mA} \\ (600 \Omega \text { or less }) \end{array} \end{aligned}$	$\begin{aligned} & 24 \mathrm{~V} \text { DC } \pm 10 \% \\ & \text { (3) } \\ & \text { None } \end{aligned}$	CC3- \square - ${ }^{\text {- }}$
	3-phase 4-wire	 110 V 1 A (11) 110 V 5 A (15) 220 V 1 A (21) 220 V 5 A (25)			$\begin{array}{ll} \text { Approx. } & \text { Approx. } \\ 3 \times 0.35 \mathrm{VA} & 3 \times 0.25 \mathrm{VA} \\ (110 \mathrm{~V}) & (5 \mathrm{~A}) \end{array}$	$\begin{aligned} & \text { (10k or less) } \\ & 0-5 \mathrm{~mA} \\ & \text { (2k or less) } \end{aligned}$	Approx. power consumption 2.2VA	CC4- \square - ${ }^{\text {- }}$

Note: * Replace the marks $\square \square \bullet \Delta$ in the type number by codes indicated in parenthesis.

Input-output

Input-output

Input	Output
LEAD	LAG
0.5 V	
$0.5-1-$	0.5
LEAD	LAG
0	

Input-output

- Phase angle transducers/CP

Accuracy:
3.0\%

Response time: 0.7 s or less
Insulation resistance: $100 \mathrm{M} \Omega$ or more, 500 V megger
Dielectric strength: $\quad 2000 \mathrm{~V}$ AC, 1 min. between input and output circuits, between input circuit and power supply 2000 V AC, 1 min . between output circuit and power supply, output circuit and case (earth terminals)
Ambient temperature and humidity: -10 to $+50^{\circ} \mathrm{C}, 90 \%$ RH or less (no condensation)

Description		Input (AC)							Output (DC)Load resistance		Control ($\mathbf{(1)}$ power supply	Type
Phase angle	Circuit	Voltage Current (\square)			Phase angle (■)	Frequency	Power consump Voltage	tion Current				
	Single phase 2-wire	$\begin{align*} & 110 \mathrm{~V} \\ & 110 \mathrm{~V} \\ & 220 \mathrm{~V} \\ & 220 \mathrm{~V} \tag{9} \end{align*}$	$\begin{aligned} & 1 A \\ & 5 A \\ & 1 A \\ & 5 A \end{aligned}$	(11) (15) (21) (25)	$\begin{aligned} & \text { LEAD } \quad \text { LAG } \\ & 60^{\circ}-0-60^{\circ} \\ & 90^{\circ}-0-90^{\circ} \end{aligned}$	50/60Hz	Approx. 0.35VA (110V)	Approx. 0.25VA (5A)	$\begin{aligned} & 1-5 \mathrm{~V} \\ & \text { (1k } \Omega \text { or more) } \\ & 0-5 \mathrm{~V} \\ & \text { (1k or more) } \\ & -5-0-+5 \mathrm{~V} \\ & (1 \mathrm{k} \Omega \text { or more }) \\ & 0-10 \mathrm{~V} \\ & \text { (2k } \Omega \text { or more) } \\ & \\ & 4-20 \mathrm{~mA} \\ & \text { (} 600 \Omega \text { or less) } \\ & 0-1 \mathrm{~mA} \\ & \text { (10k or less) } \\ & 0-5 \mathrm{~mA} \\ & \text { (2k or less) } \end{aligned}$		100/110V AC $50 / 60 \mathrm{~Hz}$ (1) 200/220V AC $50 / 60 \mathrm{~Hz}$ (2) 24 V DC $\pm 10 \%$ None (3) (9)	CP1- \square - 0 a
	3-phase 3-wire	$\begin{aligned} & 110 \mathrm{~V} \\ & 110 \mathrm{~V} \\ & 220 \mathrm{~V} \\ & 220 \mathrm{~V} \end{aligned}$	$1 A$ $5 A$ 14 1A 5	(11) (15) (21) (25)			Approx. $2 \times 0.35 \mathrm{VA}$ (110V)	Approx. $2 \times 0.25 \mathrm{VA}$ (5A)			CP3-■104	
	3-phase 4-wire	110 V 110 V 220 V 220 V	1 A 5 A 1 A 5A	(11) (15) (21) (25)			Approx. $3 \times 0.35 \mathrm{VA}$ (110V)	Approx. $3 \times 0.25 \mathrm{VA}$ (5A)			Approx. power consumption 2.2VA	CP4-■吅

Note: * Replace the marks $\square \square \bullet$ in the type number by codes indicated in parenthesis.

Input-output	
Input	Output
LEAD LAG	$0-5 \mathrm{~V}$
$60^{\circ}-0-60^{\circ}$	$0-10 \mathrm{~V}$
LEAD LAG	$0-1 \mathrm{~mA}$
$90^{\circ}-0-90^{\circ}$	$0-5 \mathrm{~mA}$

Input-output	
Input	Output
LEAD LAG	$1-5 \mathrm{~V}$
$60^{\circ}-0-60^{\circ}$	$4-20 \mathrm{~mA}$
LEAD LAGG	
$90^{\circ}-0-90^{\circ}$	

■ Mass

Type	Mass
CAC	0.3 kg
CW1, CW3, CW4	0.5 kg
CR1, CR3, CR4	0.5 kg
CF1	0.4 kg
CC1	0.5 kg
CC3, CC4	0.55 kg
CP1	0.5 kg
CP3, CP4	0.55 kg

■ Wiring diagrams

CAC (Voltage input), CF1

CR3, CC3, CP3 (3-phase, 3-wire)

CAC (Current input)

CW3 (3-phase, 3-wire)

CW1, CR1, CC1, CP1

CR4, CC4, CP4, CW4 (3-phase, 4-wire)

Note: * Never ground when VT and CT are not used.

- Type number nomenclature
- AC voltage and current transducers

- Frequency transducers

- Power factor transducers

■ Ordering information

Specify the following:

1. Type number
2. 3-phase or single-phase circuit

- Phase angle input transducers

CP \square - $\square \square \square$		
Input signa		Control power supply
CP1: 1ϕ 2W phase angle		1: $100 / 110 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$
CP3: $3 \phi 3 \mathrm{~W}$ phase angle		2: $200 / 220 \mathrm{~V}$ AC, $50 / 60 \mathrm{~Hz}$
CP4: $3 \phi 4 \mathrm{~W}$ phase angle		$\text { 3: } 24 \mathrm{~V} \text { DC }$ 9: None
Input rating		
116: $110 \mathrm{~V} 1 \mathrm{~A}, 60^{\circ}-0-60^{\circ}$		Output rating
119: $110 \mathrm{~V} 1 \mathrm{~A}, 90^{\circ}-0-90^{\circ}$		A: $1-5 \mathrm{~V}$
156: $110 \mathrm{~V} 5 \mathrm{~A}, 60^{\circ}-0-60^{\circ}$		B: $0-5 \mathrm{~V}$
159: $110 \mathrm{~V} 5 \mathrm{~A}, 90^{\circ}-0-90^{\circ}$		C: $0-10 \mathrm{~V}$
216: $220 \mathrm{~V} 1 \mathrm{~A}, 60^{\circ}-0-60^{\circ}$		S: $-5-0-+5 \mathrm{~V}$
219: $220 \mathrm{~V} 1 \mathrm{~A}, 90^{\circ}-0-90^{\circ}$		J: 0-1mA
256: 220 V 5 , 60 $0^{\circ}-0-60^{\circ}$		K: $0-5 \mathrm{~mA}$
259: $220 \mathrm{~V} 5 \mathrm{~A}, 90^{\circ}-0-90^{\circ}$		H: $4-20 \mathrm{~mA}$

WF1MA self-powered, DC-isolated transducers

- Features

- No power supply is required.
- Isolated between input and output circuits
- Snap-on mounting on IEC 35 mm rail
- Safe, secured connection of screw terminal with cover

■ Specifications

- Conversion performance

Accuracy: $\quad \pm 0.1 \%$ FS (full scale)
Temperature characteristic: $\pm 0.01 \% /{ }^{\circ} \mathrm{C}$ FS (Typ.)
Response: $\quad 50 \mathrm{~ms}$ or less (0 to 90%)
Load fluctuation: $+0.1 \% / 100 \Omega$ or less (at 250Ω or less)
$-0.1 \% / 100 \Omega$ or less (at 250Ω or more)

- Input specifications

Input signal		Internal resistance	Max. allowable current
Current input	0 to 20mA DC (common with 4 to 20mA DC)	250Ω	30 mA

- Output specifications

Output signal		Allowable load resistance
Current output	0 to 20 mA DC (common with 4 to 20 mA DC)	$1 \mathrm{k} \Omega$ or less

Internal voltage drop: 3.3 V or less
Ripple in output : $\quad 0.5 \%$ or less (at $250 \Omega, 200 \mathrm{~mA}$ load)

- General specifications

Structure: Screw-terminal integrated structure
Connection: M3.5 screw terminal
Housing material: Black PC resin
Insulation resistance:
$100 \mathrm{M} \Omega$ or more (500 V DC)
Between input, output circuits, power supply, and ground
Dielectric strength:
1500 V AC, 1 min
Between input, output circuits, power supply, and ground

- Installation specifications

Power supply: Not required
Operating temperature: -5 to $+50^{\circ} \mathrm{C}$
Operating humidity: $\quad 90 \%$ RH or less (no condensation)
Storage temperature: -10 to $+70^{\circ} \mathrm{C}$
Storage humidity: $\quad 60 \%$ RH or less (no condensation)

■ Ordering information

Specify the following:

1. Type number

■ Type number nomenclature

Note: The value of output signal is the same as that of the input signal (ratio: $1-1$). Example: $4-20 \mathrm{~mA}$ DC input - $4-20 \mathrm{~mA} \mathrm{DC} \mathrm{output}$

■ Dimensions, mm

Mass: Approx. 80g

■ Wiring diagram

WF5HS high-speed, DC-isolated transducers

Features

- 3 ports isolated between input, output circuits, and power supply
- Snap-on mounting on IEC 35 mm rail
- Saves wiring time by using push-terminal

■ Specifications

- Conversion performance

Accuracy: $\pm 0.25 \%$ FS (full scale)
Temperature characteristic: $\pm 0.02 \% /{ }^{\circ} \mathrm{C}$ FS (Typ.)
Response: 1 ms or less (0 to 90%)

- Input specifications

Input signal	Input impedance	
Voltage input	0 to $5 \mathrm{~V}, 1$ to $5 \mathrm{~V}, 0$ to 10 V DC -10 to $10 \mathrm{~V}, 0$ to $1 \mathrm{~V}, 0$ to 100 mV DC	Input impedance: $1 \mathrm{M} \Omega$ or more
Current input	4 to 20 mADC	Internal resistance: 250Ω

- Output specifications

Output signal		Allowable load resistance
Voltage output	0 to $5 \mathrm{~V}, 1$ to 5 V DC 0 to $10 \mathrm{~V},-10$ to 10 V DC	550Ω or more
Current output	4 to 20 mA DC	550Ω or less

Output adjustment - adjustable from front
Zero adjustment: -5 to +5\%
Span adjustment: 95 to 105\%

- General specifications

Structure: Push-terminal integrated structure
Connection: Push-terminal
Solid wire of 1.4 mm dia., stranded wire of $1.5 \mathrm{~mm}^{2}$ or less
Housing material: Black polycarbonate resin
Insulation resistance:
$100 \mathrm{M} \Omega$ or more (500 V DC)
Between input, output circuits, power supply, and ground
Dielectric strength:
1500 V AC, 1 min
Between input, output circuits, power supply, and ground

- Installation specifications

Power supply:
$24 \mathrm{~V} \mathrm{DC} \pm 0 \%, 80 \mathrm{~mA}$ or less
Operating temperature: -5 to $+50^{\circ} \mathrm{C}$
Operating humidity: $\quad 90 \%$ RH or less (no condensation)
Storage temperature: $\quad-10$ to $+70^{\circ} \mathrm{C}$
Storage humidity: $\quad 60 \%$ RH or less (no condensation)

■ Ordering information

Specify the following:

1. Type number

Type number nomenclature

WF5HS- $\square \square \mathbf{3 1}$	
Input signal	Power supply
11:0 to 100mV DC	3: 24 V DC $\pm 10 \%$
12: 0 to1V DC	
13: 0 to 5V DC	
14: 0 to 10 V DC	Output signal
15: 1 to 5V DC	A: 1 to 5V DC
24: -10 to +10V DC	B: 0 to 5V DC
16: 4 to 20mA DC	C: 0 to 10V DC
	K:-10 to +10V DC $\mathrm{H}: 4$ to 20 mA DC

Dimensions, mm

Mass: Approx. 80g

■ Wiring diagram

WF5PM potentiometer transducers

- Features

- WF5PM can be used irrespective of potentiometer's resistance, if the value is within the range between 100Ω and $10 \mathrm{k} \Omega$.
- 3 ports isolated between input, output circuits, and power supply
- Snap-on mounting on IEC 35 mm rail
- Saves wiring time by using push-terminal

- Specifications

- Conversion performance

Accuracy: $\pm 0.25 \%$ FS (full scale)
Temperature characteristic: $\pm 0.02 \% /{ }^{\circ} \mathrm{C}$ FS (Typ.)
Response: 50 ms or less (0 to 90%)

- Input specifications

	Input signal	Input resistance
Potentiometer	100Ω to $10 \mathrm{k} \Omega$	0.5 V

Note: No adjustment is required if it is used at all resistance values (0 to 100%) of potentiometers.

- Output specifications

	Output signal	Allowable load resistance
Voltage output	1 to $5 \mathrm{~V}, 0$ to 5 V DC	$2 \mathrm{k} \Omega$ or more
	0 to $10 \mathrm{~V},-10$ to +10 V DC	$4 \mathrm{k} \Omega$ or more
Current output	4 to 20 mA DC	550Ω or less

Output adjustment - adjustable from front
Zero adjustment: 0 to $+5 \%$
Span adjustment: 50 to 100\%

- General specifications

Structure: Push-terminal integrated structure
Connection: Push-terminal
Solid wire of 1.4 mm dia., stranded wire of $1.5 \mathrm{~mm}^{2}$ or less
Housing material: Black polycarbonate resin
Insulation resistance:
$100 \mathrm{M} \Omega$ or more (500 V DC)
Between input, output circuits, power supply, and ground
Dielectric strength:
1500V AC, 1 min
Between input, output circuits, power supply, and ground

- Installation specifications

Power supply: $\quad 24 \mathrm{~V} D \mathrm{DC} \pm 0 \%, 80 \mathrm{~mA}$ or less
Operating temperature: -5 to $+50^{\circ} \mathrm{C}$
Operating humidity: $\quad 90 \%$ RH or less (no condensation)
Storage temperature: -10 to $+70^{\circ} \mathrm{C}$
Storage humidity: $\quad 60 \%$ RH or less (no condensation)

■ Ordering information

Specify the following:

1. Type number

Type number nomenclature

Mass: Approx. 80g

Wiring diagram

WF5MA self-powered, DC-isolated transducers

- Features

- Analog process signal conversion to current output in $1: 1$ ratio
- No power supply is required.
- Snap-on mounting on IEC35mm rail
- Saves wiring time by using push-terminal

■ Specifications

- Conversion performance

Accuracy: $\pm 0.1 \%$ FS (at res. load of 250Ω)
Temperature characteristic:
$\pm 0.01 \%$ FS $/{ }^{\circ} \mathrm{C} \mathrm{FS}$ (at res. load of $250 \Omega \pm 200 \Omega$) $\pm 0.04 \% \mathrm{FS} /{ }^{\circ} \mathrm{C} \mathrm{FS}$ (at res. load of other than the aboves) Load fluctuation:
$+0.1 \%$ FS $/ 100 \Omega$ or less (at res. load of $\leq 250 \Omega$ max.)
-0.1% FS $/ 100 \Omega$ or less (at res. load of $\geq 250 \Omega \mathrm{~min}$.)
$+0.3 \%$ FS $/ 100 \Omega$ or less (at res. load of $\leq 50 \Omega$ max.)
Response: 20 ms or less (0 to 90%)
Internal voltage drop: 3V or less

- Input specifications

	Input signal	Internal resistance	Max. allowable input current
Current input	0 to $20 \mathrm{~mA} \mathrm{DC} ,\mathrm{4} \mathrm{to} \mathrm{20mA} \mathrm{DC}$ (common use)	250Ω	30 mA at 30V DC

Output specifications

	Output signal	Allowable load resistance
Current output	0 to $20 \mathrm{~mA} \mathrm{DC} ,\mathrm{4} \mathrm{to} \mathrm{20mA} \mathrm{DC}$ (common use)	$1 \mathrm{k} \Omega$ or less

- General specifications

Structure: Push-terminal integrated structure
Connection: Push-terminal
Solid wire of 1.4 mm dia., stranded wire of $1.5 \mathrm{~mm}^{2}$ or less
Housing material: Black polycarbonate resin
Insulation resistance:
$100 \mathrm{M} \Omega$ or more (500 V DC)
Between input, output circuits, power supply, and ground
Dielectric strength:
2000V AC, 1 min
Between input, output circuits, power supply, and ground

Installation specifications

Power supply: \quad Not required
Operating temperature: -5 to $+50^{\circ} \mathrm{C}$
Operating humidity: $\quad 90 \%$ RH or less (no condensation)
Storage temperature: -10 to $+70^{\circ} \mathrm{C}$
Storage humidity: $\quad 60 \%$ RH or less (no condensation)

■ Ordering information

Specify the following:

1. Type number

Type number nomenclature

■ Dimensions, mm

Mass: Approx. 80g

■ Wiring diagram

WH7DC isolated DC transducers

Description

The WH7DC isolated DC transducer is designed to convert a DC voltage or current values into a DC signal. Input and output circuits are electrically isolated from each other. These transducers are ideal for the amplifying and isolating minute signals that are output from a variety of sensors.

- Features

- Power supply of 24 V DC. I/O circuits isolated from the power supply.

- Applications

- Signal exchange between electrically isolated systems
- Prevention of control signal sneak currents
- Remote transmission of output signals

- Standards

UL recognized and CSA File No. E206961

■ Specifications

Type		WH7DC
Insulation method		Photocoupler
Accuracy		$\pm 0.1 \%$ (Pulse output: $\pm 0.2 \%$)
Temperature characteristics		$\pm 0.015 \% /{ }^{\circ} \mathrm{C}$
Response time		0.5s max. (0 to 90\%)
Insulation resistance		$100 \mathrm{M} \Omega$ or more (500V DC megger)
Dielectric strength		2000V AC, 1 min. between input-output-power supply and ground 1000 V AC, 1 min . between output 1 and output 2
Auxiliary power supply		24 V DC $\pm 10 \%$
Power consumption		Approx. 120 mA at 24 V DC
Ambient temperature and humidity		-5 to $55^{\circ} \mathrm{C}, 90 \%$ RH or less (no condensation)
Input signal (Input impedance)	Voltage	
	Current	0 to 20mA DC (250ת), 4 to 20mA DC (250ת)
Output 1 (Load resistance)	Voltage	0 to 5 V DC ($1 \mathrm{k} \Omega \mathrm{min}$.), 0 to 10V DC ($2 \mathrm{k} \Omega \mathrm{min}$.), 1 to 5 V DC ($1 \mathrm{k} \Omega$ min.)
	Current	
Output 2 (Load resistance)	Voltage	1 to 5 V DC ($1 \mathrm{k} \Omega \mathrm{min}$.)
	Current	4 to 20mA DC (350 ${ }^{\text {max. }}$)
	Pulse output	Open collector signal: 0 to 0.01 Hz min. and 1 kHz max. with 100 mA max. at 30 V Shutdown frequency: 2% of full scale
Zero adjustment range: Approx. -5\% to +5\% Span adjustment range: Approx. 95\% to 105\%		- Only output 1 is adjustable with the WH7AJ adjuster.

Type number nomenclature

WH7DC
Input signal
13:0 to 5VDC
14: 0 to 10 V DC
15: 1 to 5V DC
16: 4 to 20 mA DC
22: 0 to 20 mA DC

Output 1 \qquad
A: 1 to 5 V DC
B: 0 to 5 V DC
$\mathrm{C}: 0$ to 10 V DC
H: 4 to 20mA DC
P: 0 to 20 mA DC

Power supply
3 : 24 V DC $\pm 10 \%$

${ }_{c}{ }^{\circ} \mathrm{Sus}$

Transducers

WH7 series

WH7TC thermocouple temperature transducers

Description

The WH7TC transducer converts a thermocouple input into a DC voltage or current signal output with reference point compensation of thermal-electromotive force. Input and output circuits are electrically isolated from each other.

■ Features

- Power supply of 24V DC. I/O circuits isolated from the power supply.
- Reference point compensation function, linearizer function, and upper limit burnout function

${ }^{c}{ }^{\text {Prus }}$

WH7TC

- Applications
- Temperature input control of electric, gas, or heavy oil furnaces

- Standards

UL recognized and CSA File No. E206961

■Specifications

Type (Ordering code)		WH7TC
Insulation method		Photocoupler
Accuracy		$\pm 0.3 \%$ ($\pm 0.5 \%$ for low-range)
Temperature characteristics		$\pm 0.02 \% /{ }^{\circ} \mathrm{C}\left(\pm 0.04 \% /{ }^{\circ} \mathrm{C}\right.$ for low-range)
Response time		1s max. (0\% to 90\%)
Reference point compensation accuracy		$\pm 1^{\circ} \mathrm{C}$ max.
Burnout time		10s max.
Permissible external resistance		10Ω max.
Input thermocouple (Input impedance)		J, K, E, T, B, R, S, N (1M m min.)
Output 1 (Load resistance)	Voltage	0 to 5 V DC ($1 \mathrm{k} \Omega \mathrm{min}$.), 0 to 10 V DC ($2 \mathrm{k} \Omega \mathrm{min}$.), 1 to 5 V DC ($1 \mathrm{k} \Omega \mathrm{min}$.)
	Current	0 to $20 \mathrm{~mA} \mathrm{DC} \mathrm{(} 750 \Omega$ max.), 4 to $20 \mathrm{~mA} \mathrm{DC} \mathrm{(} 750 \Omega$ max.)
Output 2 (Load resistance)	Voltage	1 to 5 V DC ($1 \mathrm{k} \Omega \mathrm{min}$.)
	Current	4 to 20mA DC (350 ${ }^{\text {max.) }}$
Zero adjustment range: Approx. -5\% to +5\%		Only output 1 is adjustable with the WH7AJ adjuster.
Insulation resistance		$100 \mathrm{M} \Omega$ or more (500V DC megger)
Dielectric strength		2000V AC, 1 min. between input-output-power supply and ground 1000 V AC, 1 min . between output 1 and output 2
Auxiliary power supply		24V DC $\pm 10 \%$
Power consumption		Approx. 120mA at 24V DC
Ambient temperature and humidity		-5 to $55^{\circ} \mathrm{C}, 90 \% \mathrm{RH}$ or less (no condensation)

Input thermocouple range

Thermocouple code	Available temperature	Min. measurable temperature range	Thermocouple code	Available temperature	Min. measurable temperature range	Thermocouple code	Available temperature	Min. measurable temperature range
J	-100 to $1000^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	T	-150 to $400^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	S	0 to $1760^{\circ} \mathrm{C}$	$500^{\circ} \mathrm{C}$
K	-100 to $1200^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	B	0 to $1820^{\circ} \mathrm{C}$	$900^{\circ} \mathrm{C}$	N	-100 to $1200^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$
E	0 to $700^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	R	0 to $1760^{\circ} \mathrm{C}$	$500^{\circ} \mathrm{C}$			

■Type number nomenclature

Note: • Black circles indicate low-range types.

- White circles O indicate standard-range types that can be manufactured (the guaranteed accuracy ranges of thermocouples R and B are over $400^{\circ} \mathrm{C}$ and $800^{\circ} \mathrm{C}$ respectively).
- Compensation wires are used to compensate the difference in temperature between thermocouples and transducer terminals. Types of compensation wires are classified by color. Select the right one according to the thermocouple at site.
- Each transducer is shipped in combination with an RJC temperature resistance thermometer block. Use them in pairs
- A transducer with a lower limit burnout function is available on request.
- When the lower limit burnout function is triggered, the output of the transducer will scale out for a moment, then it will be set to the minimum value.

■ Ordering information

Specify the following:

1. Type number

Dimensions and wiring diagrams
See page 09/53.

Transducers
WH7 series

WH7PT resistance transducers

- Descriptions

The WH7PT transducer converts resistance changes in a temperature resistance thermometer into a DC voltage or current signal. Input and output circuits are electrically isolated.

■ Features

- Power supply of 24V DC. I/O circuits isolated from the power supply.
- Linearizer function and upper limit burnout function
- Applications
- Temperature input control from electric, gas, or heavy oil furnaces.
- Temperature input control of cold-storage warehouse.

■ Standards

UL recognized and CSA File No. E206961

■ Specifications

Type (Ordering code)		WH7PT
Insulation method		Photocoupler
Accuracy		$\pm 0.2 \%$ ($\pm 0.4 \%$ for low-range, span $100^{\circ} \mathrm{C}$ max.)
Temperature characteristics		$\pm 0.02 \% /{ }^{\circ} \mathrm{C}$ ($\pm 0.04 \%$ low-range)
Response time		1s max. (0\% to 90\%)
Burnout time		10s max.
Permissible external resistance		20Ω max. per wire (Use three wires with the same resistance.)
Input resistance thermometer		$\mathrm{Pt100} \mathrm{\Omega}$
Output 1 (Load resistance)	Voltage	0 to 5 V DC ($1 \mathrm{k} \Omega$ min.), 0 to 10V DC (2k Ω min.), 1 to 5V DC ($1 \mathrm{k} \Omega \mathrm{min}$.)
	Current	0 to $20 \mathrm{~mA} \mathrm{DC} \mathrm{(} 750 \Omega$ max.), 4 to $20 \mathrm{~mA} \mathrm{DC} \mathrm{(} 750 \Omega$ max.)
Output 2 (Load resistance)	Voltage	1 to 5V DC ($1 \mathrm{k} \Omega \mathrm{min}$.)
	Current	4 to $20 \mathrm{~mA} \mathrm{DC} \mathrm{(} 350 \Omega$ max.)
Zero adjustment range: Approx. -5\% to +5\%		Only output 1 is adjustable with the WH7AJ adjuster.
Insulation resistance		$100 \mathrm{M} \Omega$ or more (500V DC megger)
Dielectric strength		2000V AC, 1 min. between input-output-power supply and ground 1000 V AC, 1 min . between output 1 and output 2
Auxiliary power supply		24 V DC $\pm 10 \%$
Power consumption		Approx. 120 mA at 24 V DC
Ambient temperature and humidity		-5 to $55^{\circ} \mathrm{C}, 90 \% \mathrm{RH}$ or less (no condensation)

■ Type number nomenclature

P: 0 to 20mA DC

Ordering information

Specify the following:

1. Type number

- Dimensions and wiring diagrams

 See page 09/53.19: 0 to $600^{\circ} \mathrm{C}$
20: -20 to $+80^{\circ} \mathrm{C} /$ For low-range
21: -40 to $+60^{\circ} \mathrm{C} /$ For low-range
22: -50 to $+50^{\circ} \mathrm{C} /$ For low-range
23: -50 to $+100^{\circ} \mathrm{C}$
24: -50 to $+150^{\circ} \mathrm{C}$
25: -100 to $+100^{\circ} \mathrm{C}$
Note: When the lower limit burnout function is triggered, the output of the transducer will scale out for a moment, then it will be set to the minimum value.

WH7PM potentiometer transducers

Description

The WH7PM transducer converts resistance changes in potentiometers into a DC voltage or current signal.

■ Features

- Power supply of 24 V DC

I/O circuits isolated from the power supply

- Applications
- Float water gages
- Solenoid valve, gate, and damper valve opening meters
- Plunger pump and jack stroke detectors

- Standards

UL recognized and CSA File No. E206961
\square Specifications

Type		WH7PM
Insulation method		Photocoupler
Accuracy		$\pm 0.1 \%$
Temperature chara		$\pm 0.015 \% /{ }^{\circ} \mathrm{C}$
Response time		0.5s max. (0\% to 90\%)
Input signal		Entire resistance range of potentiometer 100Ω to $10 \mathrm{k} \Omega$
Input span		50% min. of entire resistance range of potentiometer
Output 1	Voltage	0 to 5V DC (1k 2 min.), 0 to 10V DC (2k 2 min.), 1 to 5V DC (1k Ω min.)
(Load resistance)	Current	0 to 20mA DC (750Ω max.), 4 to 20mA DC (750Ω max.)
Output 2	Voltage	1 to 5V DC ($1 \mathrm{k} \Omega \mathrm{min}$.)
(Load resistance)	Current	4 to $20 \mathrm{~mA} \mathrm{DC} \mathrm{(} 350 \Omega$ max.)
Zero adjustment r	prox. -5\% to +5\%	Only output 1 is adjustable with the WH7AJ adjuster.
Insulation resistan		$100 \mathrm{M} \Omega$ or more (500V DC megger)
Dielectric strength		2000V AC, 1 min. between input-output-power supply and ground 1000 V AC, 1 min . between output 1 and output 2
Auxiliary power supp		24V DC $\pm 10 \%$
Power consumptio		Approx. 120mA at 24V DC
Ambient temperat	humidity	-5 to $55^{\circ} \mathrm{C}, 90 \% \mathrm{RH}$ or less (no condensation)

■ Type number nomenclature

Ordering information

Specify the following:

1. Type number
2. Input signal range (Potentiometer resistance range)

- Dimensions and wiring diagrams See page 09/53.

WH7RV reverse transducers

Description

The WH7RV reverse transducer inversely converts an input signal into an output signal. Input and output circuits are electrically isolated from power supply.

- Features

- Power supply of 24 V DC.

I/O circuits isolated from the power supply.

■ Applications

- Reversing control operation from input
- Fail-safe circuits and output subtraction circuits

- Standards

UL recognized and CSA File No. E206961

Specifications

Type	WH7RV
Insulation method	Photocoupler
Accuracy	$\pm 0.1 \%$
Temperature characteristics	$\pm 0.015 \% /{ }^{\circ} \mathrm{C}$
Response time	$0.5 \mathrm{~s} \mathrm{max}. \mathrm{(0} \mathrm{\%} \mathrm{to} 90 \%)$
Input signal (Input impedance)	Voltage
	Current

Type number nomenclature

14: 0 to 10 V DC
15: 1 to 5V DC
16: 4 to 20 mA DC
22: 0 to 20mA DC

Output 1

\qquad
A: 5 to 1 V DC
B: 5 to $0 V D C$
C: 10 to 0V DC
H: 20 to 4mA DC
P: 20 to 0 mA DC
Output 2
A: 5 to 1V DC
H: 20 to 4 mA DC
Y : None

■ Ordering information

 Specify the following: 1. Type numberDimensions and wiring diagrams See page 09/53.

WH7SP slow pulse transducers

Description

The WH7SP slow pulse transducers are designed to convert ON-OFF pulse and voltage pulse signals into a DC voltage or current signal, isolating input and output circuits.

■ Features

- Power supply of 24 V DC, with dielectric strength 2000 V AC for 1 min and 4 ports isolated. (1000V AC for 1 min between output 1 and output 2)

- Applications

- Flow rate control combined with various types of flow meters
- Monitoring automated machines and wind force combined with rotary encoder
- Speed control of rotating machines combined with pulse transmitter and controller

Standards

- UL recognized and CSA File No. E206961 (24V DC power supply models only)

■ Specifications

Type			WH7SP
Insulation method			Photocoupler
Accuracy			$\pm 0.1 \%$
Temperature characteristics			$\pm 0.015 \% /{ }^{\circ} \mathrm{C}$
Response time			0.5s + twice of input cycle (0\% to 90\%)
Shut down frequency			Approx. 5% of input frequency
Input signal	ON/OFF pulse	Relay Open collector (NPN)	0.01 to 50 Hz (pulse width: 10 ms or more) 0.01 to 10 kHz (12 V at OFF, approx. 3 mA at ON)
	DC voltage pulse		0.01 to 10 kHz (Duty ratio $20-80 \%$ with pulse width $50 \propto s$ or more, $2 \mathrm{~V}^{\text {P-P }}$ to $50 \mathrm{~V}^{\text {P-P }}$) AC voltage 50 to $10 \mathrm{kHz}\left(2 \mathrm{~V}^{\mathrm{P}-\mathrm{P}}\right.$ to $50 \mathrm{~V}^{\mathrm{P}-\mathrm{P}}$)
Output 1 (Load resistance)	Voltage		0 to 5V DC (1k 2 min.$)$, 0 to 10 V DC ($2 \mathrm{k} \Omega \mathrm{min}$.), 1 to 5 V DC ($1 \mathrm{k} \Omega \mathrm{min}$.)
	Current		0 to 20 mA DC ($750 \mathrm{M} \Omega$ max.) 4 to 20 mA DC ($750 \mathrm{M} \Omega$ max.)
Output 2 (Load resistance)	Voltage Current		1 to 5 V DC ($1 \mathrm{k} \Omega \mathrm{min}$.) 4 to 20 mA DC ($350 \mathrm{M} \Omega$ max.)
Zero adjustment range: Approx. -5\% to +5\%			Only the output 1 is adjustable with the WH7AJ adjuster.
Insulation resistance			$100 \mathrm{M} \Omega$ or more (500V DC megger)
Dielectric strength			2000V AC, 1 min. between input-output-power supply and ground 1000 V AC, 1 min . between output 1 and output 2
Auxiliary power supply			24 V DC $\pm 10 \%$
Power consumption			Approx. 120 mA at 24 V DC
Ambient temperature and humidity			-5 to $55^{\circ} \mathrm{C}, 90 \% \mathrm{RH}$ or less (no condensation)

■ Type number nomenclature

40: AC voltage (Specify $50-10 \mathrm{kHz}$)
Output 1
1 1
A: $1-5 \mathrm{~V}$ DC
B: 0-5V DC
C: 0-10V DC
H: 4-20mA DC
P: 0-20mA DC

- Shut down frequency

When the input frequency becomes too low against the full scale. the output ripple cannot be removed. Hence, when the input frequency becomes 5% lower than the full scale, the output is forcibly zero.

Ordering information

Specify the following:

1. Type number
2. Input frequency

Input circuit diagram

- ON-OFF pulse input circuit

Relay input pulse

Open collector pulse

- Voltage pulse input circuit

Dimensions and wiring diagrams

Transducers

WH7 series

WH7DY isolation type transducers

Description

The WH7DY transducers (isolation type distributor) are designed to use by combining 2 -wire type transmitter. The WH7DY supplies DC power to the transmitters on site through signal line and converts 4 to 20 mA DC signal generated by the transmitters into input signals suitable for monitoring and control equipment, isolating input and output circuits from each other. Pulse output signal can be output as the output 2 .

- Features

- Power supply of 24 V DC, with dielectric strength 2000 V AC for 1 min and 4 -port isolated. (1000V AC 1 min , between output 1 and output 2)
- Short-circuit protection

Standards

- UL recognized and CSA File No. E206961 (24V DC power supply models only)

■ Specifications

Type		WH7DY
Power supply fro transmitter	Voltage	24 to 28 V DC at no load
	Current	Max. 22mA DC (short-circuit current: approx. 30mA)
	Ripple	$0.1 \mathrm{~V}^{\text {P-P.P }}$ or less
	Allowable short-circuit time	No limitation
	Tolerance against load fluctuation	2% or less at 0 to 100% load
Insulation method		Photocoupler
Accuracy		$\pm 0.1 \%$
Temperature characteristic		$\pm 0.02 \% /{ }^{\circ} \mathrm{C}$
Response time		0.5s or less (0\% to 90\%)
Input signal (input impedance)		4 to 20mA DC (250 2)
Input signal (with square root operation)		$\left.\mathrm{Y}=\sqrt{\frac{\mathrm{X}=(\text { Input } 0 \% \text { value })}{\text { Input span }}} \cdot \text { Output span }+ \text { (Output } 0 \% \text { value }\right)$ Where: $\mathrm{X}=$ Input value, $\mathrm{Y}=$ Output value E.g. If input $=4-20 \mathrm{~mA}$, output range $=4-20 \mathrm{~mA}$; Output $\mathrm{Y}=\sqrt{\frac{20-4}{16}} \cdot 16+4=20 \mathrm{~mA}$
Output 1 (Load resistance)	Voltage	0 to 5 V DC ($1 \mathrm{k} \Omega \mathrm{min}$.), 0 to 10 V DC ($2 \mathrm{k} \Omega$ min.), 1 to 5 V DC ($1 \mathrm{k} \Omega \mathrm{min}$.)
	Current	0 to $20 \mathrm{~mA} \mathrm{DC} \mathrm{(} 500 \mathrm{M} \Omega$ max.), 4 to $20 \mathrm{~mA} \mathrm{DC} \mathrm{(} 500 \mathrm{M} \Omega$ max.)
Output 2 (Load resistance)	Voltage	1 to 5V DC ($1 \mathrm{k} \Omega \mathrm{min}$.)
	Current	4 to $20 \mathrm{~mA} \mathrm{DC} \mathrm{(350M} \mathrm{\Omega} \mathrm{max)}$.
Zero adjustment range: Approx. -5% to $+5 \%$		Only the output 1 is adjustable with the WH7AJ adjuster.
Insulation resistance		$100 \mathrm{M} \Omega$ or more (500 V DC megger)
Dielectric strength		2000V AC, 1 min. between input-output-power supply and ground $1000 \mathrm{~V} \mathrm{AC}, 1 \mathrm{~min}$. between output 1 and output 2
Auxiliary power supply		24 V DC $\pm 10 \%$
Power consumption		Approx. 120mA at 24V DC
Ambient temperature and humidity		-5 to $55^{\circ} \mathrm{C}, 90 \% \mathrm{RH}$ or less (no condensation)

[^2]- When ordering, specify the output frequency. The frequency can also be changed by the WH7PD PC loader.

■ Type number nomenclature

Output 1
A: 1-5V DC
B: 0-5V DC
C: 0-10V DC
H: 4-20mA DC
P: 0-20mA DC

Power supply

3 : 24 V DC $\pm 10 \%$

Output 2
A: 1-5V DC
H: 4-20mA DC
W: Pulse
Y: None

Dimensions, mm
WH7DC, WH7PT, WH7PM, WH7RV, WH7SP, WH7DY

Mass: 150g

- Wiring diagrams WH7DC, WH7RV, WH7DY

WH7PM

WH7PT

WH7SP
Voltage pulse Open collector

■ Dimensions, mm

WH7TC

Mass: 150g

- Wiring diagrams

 WH7TC

Optional accessories

Simplified adjuster WH7AJ, cable WH7CB

■ Description

- The adjuster WH7AJ is connected to a WH7 series transducer to do zero point adjustment or span adjustment.
- Use a dedicated cable WH7CB (separately sold) to connect the adjuster WH7AJ to a WH7 series transducer.

- Ordering information

Specify the following:

1. Type number

Dimensions, mm

- Simplified adjuster WH7AJ

- Cable WH7CB

WT2AC AC voltage and current transducers

Features

FUJI WT2AC AC voltage and current transducers convert AC voltage/current into DC voltage/current, and also isolate input/output circuits and power supplies.

- Select from an 85 to 264 V AC, 24 V DC, or 110 V DC auxiliary power supply
- Three isolated ports: input, output, and power supply
- Thin profile and excellent cost performance
- Use either IEC 35 mm rail mounting or screw mounting
- Screw terminals with cover ensure safe, sure connection.

- Performance

Accuracy: $\pm 0.4 \%$ FS
Temperature characteristic: $\pm 0.2 \% / 10^{\circ} \mathrm{C} \mathrm{FS}$ (Typical) Response time: 0.5 s max. (0 to 90%)
Insulation resistance: 100M (500V DC megger)
Withstand voltage: 2000V AC 1 min

Input specifications

	Input signal	Input frequency
Voltage input	0 to 110V AC	$50 \mathrm{~Hz}, 60 \mathrm{~Hz}$
	0 to 150V AC 0 to 300V AC	
Current input	to 1A AC to 5A AC	

■ Output specifications

	Output signal	Permissible external resistance
Voltage output	0 to 10 mV	$10 \mathrm{k} \Omega$ or more
	0 to 100 mV	$100 \mathrm{k} \Omega$ or more
	0 to 1 V	200Ω or more
	0 to $5 \mathrm{~V} \mathrm{DC} ,\mathrm{1} \mathrm{to} \mathrm{5V} \mathrm{DC}$	$1 \mathrm{k} \Omega$ or more
	0 to 10 V DC	$2 \mathrm{k} \Omega$ or more
Current output	0 to 1 mA DC	$5 \mathrm{k} \Omega$ or less
	0 to 5 mA DC	$3 \mathrm{k} \Omega$ or less
	0 to 10 mA DC	$1.5 \mathrm{k} \Omega$ or less
	0 to 16 mA DC	900Ω or less
	0 to 20 mA DC	750Ω or less
	1 to 5 mA DC	$3 \mathrm{k} \Omega$ or less
	2 to 10 mA DC	$1.5 \mathrm{k} \Omega$ or less
	4 to 20 mA DC	750Ω or less

Output adjustment: Zero adjustment -5 to $+5 \%$

Span adjustment 95 to 105%

Ordering information

Specify the following:

1. Type number
2. Type number

- Specifications

Type	WT2AC
Terminal connection	M3.5 screw
Housing material	Enclosure: Polycarbonate resin UL94V-0
	Terminal: ABS UL94V-0
Insulation resistance	$100 \mathrm{M} \Omega(500 \mathrm{~V}$ DC megger)
Dielectric strength	2000 V AC 1 min
Auxiliary power supply	85 to $264 \mathrm{~V} \pm 10 \%(50 / 60 \mathrm{~Hz})$, approx. 3VA
	$24 \mathrm{~V} D \mathrm{D} \pm 10 \%$, approx. 100 mA
	110 V DC $\pm 10 \%$, approx. 30 mA
Operating temperature	-5 to $+50^{\circ} \mathrm{C}$
Operating humidity	$90 \% \mathrm{RH}$ or less (no condensation)
Storage temperature	-20 to $+60^{\circ} \mathrm{C}$
Storage humidity	$90 \% \mathrm{RH}$ or less (no condensation)

Input-output

Transducers
WT2AC

■ Dimensions, mm

- Rail mounting

35 mm wide IEC rail

Mass: Approx. 200g

Panel drilling
One-unit mounted n-unit mounted

■ Wiring diagram
Voltage input

Current input

Power
(-) \qquad

CN232 and CN233 arresters (surge protective devices) for low voltage circuit

- Description

Arresters (surge protective devices) protect devices connected to power supplies from lightning damage by absorbing inductive lightning surges from power supply.

■ Features

- Normal-mode surges and common-mode surges can be absorbed using only one arrester.
- Coordinated operation of 2 types of varistor enables extremely fast response to surges and a high level of surge absorption.
- Built-in thermal fuses prevent problems such as shortcircuit due to deterioration of elements.
- Indicators for easy confirmation of device status (i.e., normal or malfunction)
- Integrated terminal construction reduces space and wiring requirements for easier handling of the arrester.
- Mount to rails, using screws, or to brackets for standardized distribution boards.
- Standard-feature terminal cover to protect against electrical shock

- Applications

- Electronic devices, such as computers, measurement devices, and communications devices
- Inverters
- Electronic devices inside distribution boards (e.g., power distribution boards and lighting distribution boards)

■ Specifications

Type		CN23211	CN23212	CN23232		CN2324E	CN2324L
Applicable circuit and rated voltage (max. continuous operating voltage) Uc ($50 / 60 \mathrm{~Hz}$)		Single-phase, 2-wire, 120V	Single-phase, 2-wire, 240V	Single-phase, 3-wire, 100/200V	3-phase, 3-wire, 240V	3-phase, 3-wire, 440 V (voltage to ground)	3-phase, 3-wire, 440V (between wires)
Test class (JIS C 5381-1)		Class II					
Max. discharge current Ima x ($8 / 20 \mu \mathrm{~s}$)	Voltage to ground	10kA	10kA	10kA		10kA	-
	Between wires	5kA	5kA	5kA		-	5kA
Nominal discharge current In ($8 / 20 \mu \mathrm{~s}$)	Voltage to ground	5 kA	5 kA	5 kA		5kA	-
	Between wires	1.5 kA	1.5 kA	1.5 kA		-	1.5kA
Discharge start voltage (V 1mA)	Voltage to ground	420 to 520V	610 to 750V	610 to 750V		990 to 1,210V	-
	Between wires	240 to 310V	420 to 520V	420 to 520V		-	800 to $1,100 \mathrm{~V}$
Voltage protection level (Up)	Voltage to ground	1,100V max.	1,500V max.	1,500V max.		2,500V max.	-
	Between wires	700V max.	1,100V max.	1,100V max.		-	2,000V max.
Operating environment		Temperature: -20 to $60^{\circ} \mathrm{C}$, Humidity: 95% max. RH (no icing or condensation)					
Connection terminals/connection wires		Screw terminal connection: M5 (with protective cover for charged parts)					
		Applicable connection wire: 2 to 14 mm , Max. round crimp terminal width: 12.4 mm (nominal size: JIS C 2805 R14-5), Tightening torque: 2.0 to $2.5 \mathrm{~N} \cdot \mathrm{~m}$					
Dimensions (L x W x H)		$95 \times 50 \times 60 \mathrm{~mm}$					

Applicable connection wire: 2 to 14 mm , Max. round crimp terminal width: 12.4 mm (nominal size: JIS C $95 \times 50 \times 60 \mathrm{~mm}$

■ Specifications

Type		CN23311	CN23312	CN23332		CN2334E
Applicable circuit and rated voltage (max. continuous operating voltage) Uc ($50 / 60 \mathrm{~Hz}$)		Single-phase, 2-wire, 120V	Single-phase, 2-wire, 240V	Single-phase, 3-wire, 100/200V	3-phase, 3-wire, 240V	3-phase, 3-wire, 440V (voltage to ground)
Test class (JIS C 5381-1)		Class II				
Max. discharge current Ima x ($8 / 20 \mu \mathrm{~s}$)	Voltage to ground	20kA	20kA	20kA		20kA
	Between wires	5kA	5kA	5kA		-
Nominal discharge current In $(8 / 20 \mu \mathrm{~s})$	Voltage to ground	5 kA	5 kA	5 kA		5 kA
	Between wires	1.5 kA	1.5 kA	1.5kA		-
Discharge start voltage (V 1mA)	Voltage to ground	420 to 520V	610 to 750V	610 to 750V		850 to 1,100V
	Between wires	240 to 310V	420 to 520V	420 to 520 V		-
Voltage protection level (Up)	Voltage to ground	1,100V max.	1,500V max.	1,500V max.		2,500V max.
	Between wires	700 V max.	1,100V max.	1,100V max.		-
Operating environment		Temperature: -20 to $60^{\circ} \mathrm{C}$, Humidity: 95% max. RH (no icing or condensation)				
Connection terminals/connection wires		Screw terminal connection: M5 (with protective cover for charged parts)				
		Applicable connection wire: 2 to 14 mm , Max. round crimp terminal width: 12.4 mm (nominal size: JIS C 2805 R14-5), Tightening torque: 2.0 to $2.5 \mathrm{~N} \cdot \mathrm{~m}$				
Dimensions (L x W x H)		$95 \times 50 \times 83 \mathrm{~mm}$				

- Selection table for power supply arresters and arrester shunts

Arrester shunt	Plug fuse		Circuit breaker			
Max. discharge current	10kA	20kA	10kA			
Type	AFaC-30X x 3 (rail mounting)*	AFaC-60 $\times 3$	EA33AC/30	SA33C/30	SA53C/30	SA53RC/30
Interrupting capacity	600V AC 100kA		220 V AC 2.5 kA 440 V AC 1.5 kA	220V AC 5kA 440V AC 2.5kA	220V AC 10kA 440V AC 7.5kA	220V AC 25kA 440V AC 10kA
Arrester shunt	Circuit breaker					
Max. discharge current	20kA					
Type	EA53AC/50	EA53C/50	SA53C/50	SA53RC/50	SA63RC/60	SA103C/60
Interrupting capacity	220V AC 2.5kA 440V AC 1.5kA	220V AC 5kA 440V AC 2.5kA	220V AC 10kA 440V AC 7.5kA	220 V AC 25 kA 440 V AC 10kA	220V AC 25kA 440V AC 10kA	220V AC 50kA 440V AC 25kA

* If required, separately order a protective cover for charged parts (30A). (Type number: CG-30)

Type number nomenclature

CN23 23

- Rated voltage

11: Single-phase 2-wire, 120V
12: Single-phase 2-wire, 240V
32: 3-phase 3-wire, 240V
Single-phase 3-wire, 100/200V
4E: 3-phase 3-wire, 440V (for common-mode surges)
4L: 3-phase 3-wire, 440V (for normal-mode surges)

■ Ambient conditions

- Ambient operating temperature: -20 to $50^{\circ} \mathrm{C}$ (No condensation)
- Relative operating humidity: 45 to 85% (No condensation)
- For indoor use

■ Ordering information

Specify the following

1. Type number or ordering code

Discharge current (ground)
2: 10kA 3: 20kA
Basic type

■ Internal circuit diagrams

F: Thermal fuse
L : Indicator
Z_{1}, Z_{2} : Components for surge protective devices

■ Application examples

Single-phase 2-wire, 120V, 240V AC

3-phase 3-wire, 240V AC

*1 Male the connection at the shortest distance.
*2 Do not wire to the black-colored screw terminal.

Single-phase 3-wire, 100/200V AC

3-phase 3-wire, 440V AC

■ Dimensions, mm
 CN232

CN233

Arresters

CN226 series

CN226 series arresters (surge protective devices) for signal line and control circuit

■ Features

- Highly effective surge suppression using protection method combining gas discharge tube, varistor, and avalanche diode.
- Large surge discharge current
- Fast response to surges reduces influence on device.
- A comprehensive lineup to suit all kinds of signal line applications (e.g., transducers, remote terminals, and sensors).
- Simple mounting to IEC rail.
- The arrester mounts to the terminal block using a plug-in connection for simple inspection and replacement. Signal lines are not opened even if the arrester is removed.

■ Specifications

- For signal line circuit

Type		CN226-A20	CN226-A50	CN226-TC	CN226-PT	CN226-PM	CN226-SP	CN226-24	CN226-48	CN226-100
Application		4-20mA	10-50mA	Thermocouple	Resistance thermometer	Potentiometr	Slow pulse	24V DC	48V DC	100V DC
Rated voltage		24V DC	48V DC	5V DC	8V DC	5V DC	12V DC	24V DC	48V DC	100V DC
Rated current		100 mA						200 mA		
Leakage current		$5 \mu \mathrm{~A}$ max.		$\begin{array}{\|l\|} \hline 10 \mu \mathrm{~A} \text { max. } \\ \hline 6.7 \mathrm{~V} \text { min. } \\ \hline \end{array}$	$2 \mu \mathrm{~A}$ max.	10رA max.		$5 \mu \mathrm{~A}$ max.		
Operation start	Between wires	30 V min.	61 V min.		11 V min.	6.7 V min.	14V min.	30V min.	60 V min.	150 V min.
voltage (V1mA)	Voltage to ground	150 V min.								180 V min.
Clamping voltage (Vp)	Between wires	40V max.	100V max.	14V max.	22 V max.	14V max.	25V max.	55V max.	130V max.	700 V max.
	Voltage to ground	300 V max.								800V max.
Internal resistance		$10 \Omega 10 \%$ (Single)			$\text { \| } 2 \Omega 10 \% \text { (Single) }$	$10 \Omega 10 \%$ (Single)		$1 \Omega 10 \%$ (Single)		
No. of ports		2-port, combination type								
Response time		$0.1 \mu \mathrm{~s}$ max.								
Max.discharge current ($8 / 20 \mu \mathrm{~s}$)	Between wires	5,000A								
	Voltage to ground	10,000A								

- For control power supply circuit

Type		CN226-24A	CN226-48A	CN226-100B
Application		24V AC/DC	48V AC/DC	$100 \mathrm{~V} \mathrm{AC/DC}$
Rated voltage		24V AC/DC	48V AC/DC	100V AC/DC
Rated current		2A		
Leakage current		10A max.		
Operation start voltage(V1mA)	Between wires	40 V min.	84V min.	370 V min.
	Voltage to ground	300 V min.		400 V min.
Clamping voltage (Vp)	Between wires	250V max.	400V max.	850V max.
	Voltage to ground	400V max.		1,000V max.
Internal resistance		- -		-
No. of ports		1-port, combination type		
Response time		$0.1 \mu \mathrm{~s}$ max.		
Max.discharge current $(8 / 20 \mu \mathrm{~s})$	Between wires	2,000A		5,000A
	Voltage to ground	2,000A		5,000A

- Type number nomenclature

A20: 4 to 20 mA
A50: 10 to 50 mA
TC: Thermocouple
PT: Resistance thermometer
PM: Potentiometer
SP: Slow pulse
24: Signal circuit 24V DC
48: \quad Signal circuit 48V DC
100: Signal circuit 100V DC
24A: Control power supply circuit 24 V AC/DC
48A: Control power supply circuit 48V AC/DC
100B: Control power supply circuit 110V AC/DC
Basic type

■ UL-approved type (Applicable standard: UL 497B File No. E253735)

Category	Signal circuit							
Type number (i.e., product code)	CN226-A20	CN226-A50	CN226-TC	CN226-PT	CN226-PM	CN226-SP	CN226-24	CN226-48
Application	$4-20 \mathrm{~mA}$	$10-50 \mathrm{~mA}$	Thermocouple	Resistance thermometer	Potentiometer	Slow pulse	24 V DC	48 V DC

[^3]
■ Ambient conditions

- Ambient operating temperature: -20 to $50^{\circ} \mathrm{C}$ (No condensation)

■ Ordering information

Specify the following:

1. Type number or ordering code

- Relative operating humidity: 45% to 85% (No condensation)
- For indoor use

- Internal wiring

■ Application circuit example

Note: When using a CN226-100A arrester, use a plug fuse (AFaC-30X) for disconnection and short-circuit protection.

■ Dimensions, mm

Arresters

CN227 series

■ Features

The arrester protects network circuits from lightning surges.

- Communications networks are supported (e.g., 10Base-5, 100Base-TX, RS-485, PLC T-Link).
- Ideal design for applications with high-performance in protection against lightning surges.
- Support for CN227-EBT

High-speed communications (100Mbps min.) enables highperformance response to surges.
Compact, lightweight, and easy to connect (RJ-45 modular connector).

- CN227-EB5

Extremely small signal loss enables high-performance response.
Easy installation and replacement (mounting bracket and grounding wire included).

- CN227-RS42, RS44

The body is slim (22.5 mm wide) and European-style terminal blocks are used.
Types are available to support 2-wire (RS42) or 4-wire (RS44). The arrester provides a long service life and high surge resistance ($10 \mathrm{kA}, 8 / 20 \mu \mathrm{~s}$) and protection characteristics that satisfied categories C2 and D1 of the JIS C 5381-21 standard.

■ Ratings, specifications, models, product codes, prices (excluding tax), and shipment

Type		CN227-EBT	CN227-EB5	CN227-RS42	CN227-RS44	
Application		Ethernet 10Base-T100Base-TX	Internet 10Base-5	RS-485, PLC (T link), remote terminals, 60V DC max. signal circuits		
		2-wire		\|4-wire		
Max. continuous operating voltage (Uc)			52 V DC	3.5 V DC	60V DC	
Rated current		100 mA	100 mA	500 mA		
Transmission frequency bandwidth		DC 0 to 100MHz	DC 0 to 20MHz	DC 0 to 2MHz		
Insertion loss		2dB max.	0.5 dB max.	1dB max.		
Transmission speed/DC resistance		100Mbps	10Mbps	DC resistance: 0.1Ω max.		
DC operating voltage (V 1mA)/DC discharge start voltage ($100 \mathrm{~V} / \mathrm{s}$)	Between wires	-	DC4.5V $\pm 15 \%$ (100V/s)	$\mathrm{DC} 82 \mathrm{~V} \pm 10 \%\left(\mathrm{~V}_{1 \mathrm{~mA}}\right)$		
	Voltage to ground	DC65V $\pm 15 \%$ (100V/s)	DC90V $\pm 25 \%$ (100V/s)	DC90V $\pm 20 \%$ ($100 \mathrm{~V} / \mathrm{s}$)		
Voltage protection level (impulse limit voltage) (Up)	Between wires *1	150V max.	40V max.	400V max.		
	Voltage to ground	150V max.	350 V max.	400V max.		
Impulse withstand *2	$\begin{aligned} & \begin{array}{l} \text { Category C2 } \\ (8 / 20 \mu \mathrm{~s}) \end{array} \\ & \hline \end{aligned}$	500A	10kA	10kA		
	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Category D1 } \\ (8 / 350 \mu \mathrm{~s}) \end{array} \\ \hline \end{array}$	-	-	2.5kA		
Environment		Temperature: -20 to $60^{\circ} \mathrm{C}$, Humidity: 95% max. RH (no icing or condensation)				
Interface and applicable connection wire		Modular (RJ-45)	Coaxial tap (transceiver connection)	Screw terminal connection method Solid wire: 0.4 to 1.6 mm dia., stranded wire: 0.14 to $2.5 \mathrm{~mm}^{2}$		
Mechanical durability	Vibration resistance (durability)	-	-	Frequency: 10 to 55 Hz , Double amplitude: 0.75 mm (4.5G max.), 2 hours in each direction for a total of 6 hours		
Dimensions ($\mathrm{L} \times \mathrm{W} \times \mathrm{H}$)		$\begin{array}{l\|} \text { (Thickness: Oval) } \\ 35 \times 40 \times \text { (length) } 81 \mathrm{~mm} \end{array}$	$28 \times 67 \times 119 \mathrm{~mm}$	$90 \times 22.5 \times 70 \mathrm{~mm}$		

[^4]
■ Internal wiring

CN227-EB5

CN227-RS42

CN227-RS44

■ Dimensions, mm

Arresters

CN227 series

■ Application circuit example

\square Wiring method

■ Grounding wiring

The arrester protects network circuits from lightning surges.

- CN227-RS44A

- Application
- Devices are protected from lightning surges that may enter instrument cables or control cables of RS-485, 24V DC-max. signal circuits.

- Features

- Entrance of high-frequency noise from arrester grounding circuits is prevented.
- Protection characteristics satisfy categories C2 and D1 of the JIS C5381-21 standard.
- Use of screwless connection terminals eliminates the need for crimp terminals.
- IEC rail mounting.
- CN227-350S
- Application
- Broadcasting equipment is protected from lightning surges that may enter broadcasting speaker circuits or 100/200V-AC contact signal circuits.

■ Features

- Protection characteristics satisfy categories C2 and D1 of the JIS C5381-21 standard.
- Use of screwless connection terminals eliminates the need for crimp terminals.
- IEC rail mounting.
- CN227-SD
- Application
- Communications equipment is protected from lightning surges that may enter telephone lines or other communications lines.

- Features

- Protection characteristics satisfy categories C2 and D1 of the JIS C5381-21 standard.
- Use of screwless connection terminals eliminates the need for crimp terminals.
- IEC rail mounting.
- CN227-UCP
- Application
- Communications equipment is protected from lightning surges that may enter telephone lines or other communications lines.

■ Features

- Support for UCS (universal connection system).
- Modular plug-in for high-density wiring system.
- Equipped with failure display.

- CN227-NT

- Application

- Equipment is protected from lightning surges that may enter coaxial cables of ITV and monitor cameras or data transmission devices.

- Features

- Ideal protection for ITV coaxial lines with weak withstand voltage.
- Transmission noise is absorbed with improved production characteristics by combining gas discharge tubes at noise filters.
- Protection characteristics satisfy categories C2 and D1 of the JIS C5381-21 standard.
- IEC rail mounting.
- Ideal for transmission lines on which a DC power supply (30 V $\mathrm{DC}, 250 \mathrm{~mA}$ max.) is superimposed on the coaxial.

- CN227-TV

- Application
- Devices are protected from lightning surges that may enter coaxial cables for a satellite digital TV.

- Features

- Composed with coaxial connectors and high-performance gas discharge tubes.
- Compact size with high impulse resistance.
- Excellent transmission performance (large frequency bandwidth and little insertion loss).

Arresters

CN227 series

■ Ratings, specifications, types, prices (excluding tax), and shipment

Type		CN227-RS44A	CN227-350S	CN227-SD
Application		RS-485, remote terminals, 24V DC max. signal circuits	Broadcasting speaker circuits 100/200V AC contact signal circuits	General telephone lines
		Low electrostatic capacity, 4-wire	4-wire	2-wire
Max. continuous operating voltage (Uc)		27V DC	275V AC/350V DC	180V DC
Rated current		100mA	2A	120mA
Transmission frequency bandwidth		DC 0 to 500 kHz	DC 0 to 100 MHz	DC 0 to 5 MHz
Insertion loss		1dB max.	1dB max.	1.5dB max.
Transmission speed/DC resistance		DC resistance: $5 \Omega \pm 10 \%$ (1 wire)	DC resistance: 0.5Ω max.	DC resistance: 20Ω max. (1 wire)
DC operating voltage (V1mA)/DC discharge start voltage (100V/s)	Between wires	-	-	-
	Voltage to ground	$\begin{aligned} & \hline \text { Between 1, 2, 3, 4-5, 8: } \\ & 33 \mathrm{~V} \pm 10 \% \mathrm{DC}\left(\mathrm{~V}_{1 \mathrm{~mA}}\right) \\ & \text { Between 5, 8-6, } 7: 90 \mathrm{~V} \pm 20 \% \mathrm{DC} \\ & (100 \mathrm{~V} / \mathrm{s}) \end{aligned}$	$\begin{aligned} & \hline \text { Between 1, 2, 3, 4-5, 8: } \\ & 470 \mathrm{~V} \pm 10 \% \mathrm{DC}\left(\mathrm{~V}_{1 \text { ma }}\right) \\ & \text { Between 5, 8-6, } 7: 90 \mathrm{~V} \pm 20 \% \mathrm{DC} \\ & (100 \mathrm{~V} / \mathrm{s}) \end{aligned}$	$\begin{aligned} & 230 \mathrm{~V} D \mathrm{D} \pm 20 \% \\ & (100 \mathrm{~V} / \mathrm{s}) \end{aligned}$
Voltage protection level (impulse limit voltage) (Up)	Between wires *1	Between A, B, C, D: 100V max.	Between A, B, C, D: 1,300V max.	400V max.
	Voltage to ground	Between A, B, C, D-E, H: 100V max.	Between B, C, D-E, H: 1,300V max.	400V max.
		Between E, H-F, G: 600V max.	Between E, H-F, G: 600V max.	
Impulse withstand *2	$\begin{aligned} & \text { Category C2 } \\ & (8 / 20 \mu \mathrm{~s}) \end{aligned}$	10kA	10kA	10kA
	$\begin{aligned} & \hline \text { Category D1 } \\ & (8 / 350 \mu \mathrm{~s}) \end{aligned}$	2.5 kA	0.5 kA	5kA
Environment		Temperature: -20 to $60^{\circ} \mathrm{C}$, Humidity: 95% max. RH (no icing or condensation)		
Interface and applicable connection wire		Screw terminal connection method Solid wire: 0.4 to 1.6 mm dia., stranded wire: 0.14 to $2.5 \mathrm{~mm}^{2}$		
Mechanical durability	Vibration resistance (durability)	Frequency: 10 to 55 Hz , Double amplitude: 0.75 mm (4.5 G max.), 2 hours in each direction for a total of 6 hours		
Dimensions (L \times W \times H)		$90 \times 22.5 \times 70 \mathrm{~mm}$		
Type		CN227-UCP	CN227-NT	CN227-TV
Application		General telephone lines (modular)	ITV and monitor cameras	Satellite digital TV
		2-wire		
Max. continuous operating voltage (Uc)		170V DC	30V DC	60V DC
Rated current		130mA	250mA	500mA
Transmission frequency bandwidth		DC 0 to 10MHz	DC 0 to 10MHz	DC 0 to 2.2GHz
Insertion loss		1dB max.	1.5dB max.	0.5 dB max.
Transmission speed/DC resistance		DC resistance: 13Ω max. (1 wire)	DC resistance: 4Ω max.	-
DC operating voltage (V1mA)/DC discharge start voltage (100V/s)	Between wires	-	-	-
	Voltage to ground	175 to 275V DC (100V/s)	$\begin{aligned} & 90 \mathrm{~V} \mathrm{DC} \pm 20 \% \\ & (100 \mathrm{~V} / \mathrm{s}) \end{aligned}$	$\begin{aligned} & 90 \mathrm{~V} \mathrm{DC} \pm 20 \% \\ & (100 \mathrm{~V} / \mathrm{s}) \end{aligned}$
Voltage protection level (impulse limit voltage) (Up)	Between wires *1	300V max.	250V max.	-
	Voltage to ground	300V max.	250V max.	600V max. (between central conductor and external conductor)
Impulse withstand *2	$\begin{aligned} & \text { Category C2 } \\ & (8 / 20 \mu \mathrm{~s}) \\ & \hline \end{aligned}$	10kA	10kA	10kA
	$\begin{array}{\|l} \hline \text { Category D1 } \\ (8 / 350 \mu \mathrm{~s}) \\ \hline \end{array}$	2.5 kA	2.5 kA	2.5 kA
Environment		Temperature: -20 to $60^{\circ} \mathrm{C}$, Humidity: 95% max. RH (no icing or condensation)		
Interface and applicable connection wire		Plug-in solid wire: 0.4 to 0.8 dia.	BNC jack - BNC jack	F jack - F jack
Mechanical durability	Vibration resistance (durability)	-	Frequency: 10 to 55 Hz , Double amplitude: 0.75 mm (4.5G max.), 2 hours in each direction for a total of 6 hours	
Dimensions (L x W x H)		$19 \times 9.5 \times 59.5 \mathrm{~mm}$	$60 \times 32 \times 91 \mathrm{~mm}$	(Thickness) $28 \times 30 \times$ (length) 60 mm

[^5]*2: This gives the total value for voltage to ground for each wire. Category C2 indicates the current value with power applied 5 times each for positive and negative polarities at a current waveform of $8 / 20 \mu \mathrm{~s}$, and category D1 indicates the current value with power applied one time each for positive and negative polarities at a current waveform of $8 / 350 \mu \mathrm{~s}$.

■ Internal wiring

Dimensions, mm

CN227-RS44A, -350S, -SD

CN227-NT

Input terminals and output terminals

CN227-TV

Arresters

CN227 series

\square Overview and features

- The AS-i arrester protects AS-interface modules connected to AS-i networks and networks from overvoltage due to inductive lightning surge and switching surge.
- Only the AS-i arrester is required to protect AS-i signal circuits and auxiliary power supply circuits.
- The construction, network connectivity, and protection level (IP67) of the AS-i arrester are the same as for waterproof connector slaves (slim type).
- The AS-i arrester does not require assigning addresses in the AS-interface network.
- A FM6B1-04FE or FM6B2-04FE slave base is required to connect the AS-interface cable (yellow) and auxiliary power supply cable (black).

\square Ratings, specifications, types, prices (excluding tax), and shipment

Type		CN227-ASI	
Application		AS-i signal circuit	Auxiliary power supply circuit
Max. continuous operating voltage (Uc)		31.6V DC	30V DC
Rated current (In)		0.5A	5A
Insertion loss: DC 0 to 5MHz (110)		0.2 dB max.	-
Electrostatic capacity (100kHz)	Between wires	100pF max.	-
	Voltage to ground	10pF max.	-
Voltage protection level (Up)	Between wires	100 V max.	100V max.
	Voltage to ground	700 V max.	400V max.
Impulse withstand category C2 *1	Between wires	8/20 $/$ s 400A	8/20رs 400A
	Voltage to ground	8/20 $/$ s 1000A	8/20 $\mu \mathrm{s} 1000 \mathrm{~A}$
Impulse withstand current *2	Voltage to ground	8/20 $/ 2000 \mathrm{~A}$	8/20 $/ 2000 \mathrm{~A}$

Note *1: Impulse withstand category C2 indicates the performance that is possible with power applied 5 times for positive and negative polarities at a current waveform of $8 / 20 \mu \mathrm{~s}$.
*2: Impulse withstand current indicates the performance possible with power applied for 1 time max. at a current wavelength of $8 / 20 \mu \mathrm{~s}$.

■ Internal wiring

Type		CN227-ASI	
Application		AS-i signal circuit	Auxiliary power supply circuit
DC operating voltage	Between wires	$\begin{array}{\|l} \hline \text { DC39V } \pm 10 \% \\ (\mathrm{~V}=5 \mathrm{~mA}) \end{array}$	$\begin{aligned} & \begin{array}{l} \text { DC39V } \pm 10 \% \\ (\mathrm{~V}=5 \mathrm{~mA}) \end{array} \\ & \hline \end{aligned}$
	Voltage to ground	$\begin{array}{\|l} \hline \text { DC90V } \pm 20 \\ (100 \mathrm{~V} / \mathrm{s}) \end{array}$	$\begin{aligned} & \begin{array}{l} \text { DC82V } \pm 10 \% \\ (\mathrm{~V}=1 \mathrm{~mA}) \end{array} \end{aligned}$
Operating environment		Temperature: -20 to $60^{\circ} \mathrm{C}$, Humidity: 95% max. (no condensation)	
Shock resistance	Rail mounting	$150 \mathrm{~m} / \mathrm{s}^{2}$ (11ms)	
Vibration resistance	Rail mounting	10 to $55 \mathrm{~Hz}, 0.5 \mathrm{~mm}$ single amplitude	

■ Dimensions, mm

Fuji Electric FA Components \& Systems Co., Ltd./D \& C Catalog

- Application circuit example

Arresters
 CN2340, CN2341

■ Features

Single-pole arrester with gas discharge tube. Is important to use the same equipotential bonding and ground when building systems to protect against lightning.
Sometimes, however, various types of grounds are independently installed inside equipment, and grounding circuit arresters enable potential equalization between grounding polls.

- CN2340: Used when the same ground cannot be used between power circuits.
(For example, performing grounding with provisions based on electrical equipment technology standards, such as independent B -type grounding.)
- CN2341: Used when the same ground cannot be used for power circuits and control circuits.

(For example, performing independent grounding of devices to prevent noise from entering, such as with inverter grounding.)
- With a rail mounting construction that is 18 mm wide, the design is ideal for applications.

■ Ratings, specifications, types, prices (excluding tax), and shipment

Description

The FUJI low-voltage instrument transformers are available as current transformers and potential transformers. These transformers have a *maximum voltage of 1150 V and are suitable for circuits up to 600 V . Windings have excellent mechanical, thermal and electrical performance since CT's are molded in polyester resin and VT's in epoxy resin. They are also moisture proof and have good insulation properties. The laminated iron core is made of oriented silicon steel strip. Both VT's and CT's have a class 1.0 accuracy rating, and conform to the requirements of JIS C 1731, JEC 1201 and other standards.
Current transformers are available in either through-type or primary-winding versions.
*Maximum voltage: $\frac{\text { Nominal voltage }}{1.1}$

- Low voltage current transformers

CC3L

The CC3L type is a round hole throughtype current transformer. The ratio can be changed according to the number of turns of the primary windings. It has excellent insulation characteristics and is both compact and light in weight.

CC3P

The CC3P type is a current transformer which has a primary winding thus facilitating connection work.
The installation angle can be varied from the standard position through 90°. They can be supplied with the primary current rating from 5 to 50 Amps.

CC3M

AF00-107
The CC3M type is a current transformer which has a flat terminal primary winding. It is used in the bus section of the load center or the control center. It can be mounted either horizontally or vertically.

CC2

AF99-266
The CC2D and 2C current transformers are split-types. The CTs can be mounted to existing panels, such as control centers or load centers, to measure or monitor the wattage. These can be mounted without removing existing cables for easier installation. Rated primary currents are available from 5 to 1200A.

Low voltage potential transformers CD 32, 34

AF00-215
The CD32 and CD34 transformers are low-voltage types. Types with a fuse of a 100kA interrupting capacity have been added to the series. This series is available for burdens of 15 and 50VA.

- Varieties of instrument transformers

Description		Type	Burden	Primary	Secondary
CT	Round hole through-type		$\begin{array}{r} \hline 5 \mathrm{VA} \\ 15 \mathrm{VA} \\ 40 \mathrm{VA} \end{array}$	$\begin{array}{r} 60-750 \mathrm{~A} \\ 100-750 \mathrm{~A} \\ 150-750 \mathrm{~A} \end{array}$	$\begin{aligned} & 5 \text { or } 1 A \\ & 5 \text { or } 1 A \\ & 5 \text { or } 1 A, 5 A \end{aligned}$
	With primary winding	$\begin{aligned} & \text { CC3P1 } \\ & \text { CC3P2 } \\ & \text { CC3P3 } \end{aligned}$	$\begin{array}{r} \hline 5 \mathrm{VA} \\ 15 \mathrm{VA} \\ 40 \mathrm{VA} \end{array}$	$\begin{aligned} & 1-50 A \\ & 1-50 A \\ & 1-50 A \end{aligned}$	$\begin{aligned} & 5 \text { or } 1 \mathrm{~A} \\ & 5 \text { or } 1 \mathrm{~A} \\ & 5 \text { or } 1 \mathrm{~A} \end{aligned}$
	Rectangular hole through type	CC3M1 CC3M2 CC3M3	$\begin{array}{r} \hline 5 \mathrm{VA} \\ 15 \mathrm{VA} \\ 40 \mathrm{VA} \end{array}$	$\begin{aligned} & 150-600 \mathrm{~A} \\ & 150-2000 \mathrm{~A} \\ & 200-6000 \mathrm{~A} \\ & \hline \end{aligned}$	5A 5 or 1A 5 or $1 A, 5 A$
	Split type	$\begin{aligned} & \text { CC2D } \\ & \text { CC2C } \end{aligned}$	$\begin{aligned} & 0.2693 \mathrm{mVA}-0.5 \mathrm{VA} \\ & 0.5 \mathrm{VA} \end{aligned}$	$\begin{array}{r} 5-400 \mathrm{~A} \\ 800-1200 \mathrm{~A} \\ \hline \end{array}$	$\begin{aligned} & 7.34 \mathrm{~mA}-1 \mathrm{~A} \\ & 1 \mathrm{~A} \\ & \hline \end{aligned}$

| Description | | Type | Burden | $\begin{array}{l}\text { Primary } \\ \text { voltage }\end{array}$ |
| :--- | :--- | :--- | :--- | :--- | \(\left.\begin{array}{l}Secondary

voltage\end{array}\right]\)

Instrument Transformers
 Through-type CT/CC3L

CC3L round hole through-type current transformers

Primary current: 60 to 750 A
Secondary current: 5A or 1A

Description

The CC3L transformers are round-hole through-types. A double-mold structure gives CC3L transformers excellent moisture resistance and good insulation properties.

The CT ratio can be changed freely by changing the number of primary winding turns. Consequently, these CTs are highly adaptable and economical.
Select from a lineup of three types with rated burdens of $5 \mathrm{VA}, 15 \mathrm{VA}$, and 40 VA .
The mounting base can be rotated anywhere in a 90° range to facilitate installation.

Types and ratings

Burden (VA)	Rated primary current (A)	Secondary current (A)	Accuracy class	Thermal limit current	Max voltage (kV rms.)	Dielectric strength (kV 1min)	Diameter of window (mm)	$\begin{aligned} & \text { Mass } \\ & (\mathrm{kg}) \end{aligned}$	Type* (secondary current: \qquad
5	$\begin{aligned} & 60 \\ & 75 \end{aligned}$	5 or 1	1.0	40 times rated primary current, 1 second	1.15	4.0	26	1.9	$\begin{aligned} & \text { CC3L1-060 } \square \\ & \text { CC3L1-075 } \end{aligned}$
	$\begin{aligned} & 100 \\ & 120 \\ & 150 \\ & 160 \\ & 180 \end{aligned}$						23	0.5	CC3L1-100 \square CC3L1-120 \square CC3L1-150 \square CC3L1-160 \square CC3L1-180 \square
	200							0.4	CC3L1-200 \square
	$\begin{aligned} & 250 \\ & 300 \end{aligned}$						32	0.6	CC3L1-250 \square CC3L1-300 \square
	400							0.5	CC3L1-400 \square
	500	5 or 1					50	0.7	CC3L1-500 \square
	$\begin{aligned} & 600 \\ & 750 \end{aligned}$							0.6	CC3L1-600 \square CC3L1-750 \square
15	$\begin{aligned} & \hline 100 \\ & 120 \end{aligned}$	5 or 1	1.0	40 times rated primary current, 1 second	1.15	4.0	26	2.0	CC3L2-100 \square CC3L2-120 \square
	$\begin{aligned} & 150 \\ & 160 \\ & 180 \\ & 200 \end{aligned}$						25	1.0	CC3L2-150 \square CC3L2-160 \square CC3L2-180 \square CC3L2-200 \square
	$\begin{aligned} & 240 \\ & 250 \\ & 300 \\ & 400 \end{aligned}$						32	0.6	CC3L2-240 \square CC3L2-250 \square CC3L2-300 \square CC3L2-400 \square
	$\begin{aligned} & 500 \\ & 600 \\ & 750 \end{aligned}$	5 or 1					50	0.8	CC3L2-500 \square CC3L2-600 \square CC3L2-700 \square
40	$\begin{aligned} & 150 \\ & 160 \\ & 180 \\ & 200 \end{aligned}$	5 or 1	1.0	40 times rated primary current, 1 second	1.15	4.0	26	2.0	CC3L3-150 \square CC3L3-160 \square CC3L3-180 \square CC3L3-200 \square
	$\begin{aligned} & 240 \\ & 250 \\ & 300 \\ & 400 \\ & \hline \end{aligned}$						32	1.2	CC3L3-240 \square CC3L3-250 \square CC3L3-300 \square CC3L3-400 \square
	$\begin{aligned} & 500 \\ & 600 \\ & 750 \end{aligned}$	5					50	0.8	$\begin{aligned} & \text { CC3L3-5005 } \\ & \text { CC3L3-6005 } \\ & \text { CC3L3-7505 } \end{aligned}$

■ Type number nomenclature

Burden
1: 5VA 3: 40VA 2: 15VA

Secondary current
1: 1A 5: 5A
Rated primary current See page 09/58.
060: 60 ampere turn
750: 750 ampere turn

■ Dimensions, mm

CC3L1: 100, 120, 150, 160, 180, 200A

CC3L1, L2, L3: 500, 600, 750A

CC3L1: 60, 75A CC3L2: 100, 120A
CC3L3: 150, 160, 180, 200A

Ordering information
Specify the following:

1. Type number

CC3L1: 250, 300, 400A
CC3L2: 240, 250, 300, 400A

CC3L2: 150, 160, 180, 200A

CC3L3: 240, 250, 300, 400A

- Number of turns in the primary winding and CT ratio

The following table lists the rated primary current, number of turns of primary windings, and the maximum nominal cross-section area
of the 600 V IV cable that can pass through. (\varnothing indicates the diameter of a single wire.)
The table data satisfies allowable current for
a 600 V IV cable at an ambient temperature of $40^{\circ} \mathrm{C}$.

- 15VA CC3L2

R
cu
(A

| $\begin{array}{l}\text { Rated primary } \\ \text { current }\end{array}$ | $\begin{array}{l}\text { Primary } \\ \text { current } \\ \text { (A) }\end{array}$ | $\begin{array}{l}\text { No. of } \\ \text { turns }\end{array}$ | $\begin{array}{l}\text { Primary } \\ \text { conductor } \\ \left(\mathrm{mm}^{2}\right)\end{array}$ |
| :--- | :--- | :--- | :--- | $\frac{\text { (Amp }}{100}$

- 5VA CC3L1

Rated primary current (Ampere turn AT)	Primary current (A)	No. of turns	Primary conductor $\left(\mathrm{mm}^{2}\right)$
60	10	6	5.5
	15	4	14
	20	3	22
	30	2	22
	60	1	150
75	15	5	8
	25	3	22
	75	1	150
100	10	10	ø2
	20	5	8
	25	4	14
	50	2	22
	100	1	150
120	15	8	5.5
	20	6	8
	30	4	14
	40	3	22
	60	2	22
	120	1	150
150	15	10	$\varnothing 2$
	25	6	8
	30	5	8
	50	3	22
	75	2	22
	150	1	150
160	20	8	5.5
	40	4	14
	80	2	22
	160	1	150
180	20	9	ø2
	30	6	8
	60	3	22
	180	1	150
200	20	10	ø2
	25	8	5.5
	40	5	8
	50	4	14
	200	1	150
250	25	10	8
	50	5	22
	125	2	60
	250	1	325
300	30	10	8
	50	6	14
	60	5	22
	75	4	38
	100	3	60
	150	2	60
	300	,	325
400	40	10	8
	50	8	14
	100	4	38
	400	1	325
500	50	10	22
	100	5	60
	125	4	100
	250	2	200
	500	1	500
600	60	10	22
	75	8	38
	100	6	60
	150	4	100
	200	3	150
	300	2	200
	600	1	500
750	75	10	22
	150	5	60
	750	1	2002 pcs.

Note: The rated primary current is given for one turn of the primary winding.

CC3P current transformers with primary winding

Primary current: 5 to 50 A
Secondary current: 5 A or 1 A

Description

CC3P CTs support primary winding for easy wiring.
The mounting base can be rotated anywhere in a 90° range to facilitate installation. A double-mold structure gives CC3P CTs excellent moisture resistance and good insulation properties.

Select from a lineup of three types with rated burdnes of $5 \mathrm{VA}, 15 \mathrm{VA}$, and 40 VA .

Types and ratings

Burden (VA)	Rated primary current (A)	Secondary current (A)	Accuracy class	Thermal limit current	Max. voltage (kV rms.)	Dielectric strength (kV 1 min.)	Mass (kg)	Type
5	1 2 3 5 7.5 10 15 20 25 30	5 or 1	1.0	40 times rated primary current	1.15kV	4.0 kV	0.7	CC3P1-001 \square CC3P1-002 \square CC3P1-003 \square CC3P1-005 \square CC3P1-7P5 \square CC3P1-010 \square CC3P1-015 \square CC3P1-020 \square CC3P1-025 \square CC3P1-030 \square
	$\begin{aligned} & 40 \\ & 50 \end{aligned}$	5 or 1	1.0		1.15 kV	4.0kV	1.1	$\begin{aligned} & \text { CC3P1-040 } \square \\ & \text { CC3P1-050 } \square \end{aligned}$
15	$\begin{gathered} \hline 1 \\ 2 \\ 3 \\ 5 \\ 7.5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \\ 40 \\ 50 \end{gathered}$	5 or 1	1.0	40 times rated primary current	1.15 kV	4.0kV	1.1	CC3P2-001 \square CC3P2-002 \square CC3P2-003 \square CC3P2-005 \square CC3P2-7P5 \square CC3P2-010 \square CC3P2-015 \square CC3P2-020 \square CC3P2-025 \square CC3P2-030 \square CC3P2-040 \square CC3P2-050 \square
40	$\begin{gathered} \hline 1 \\ 2 \\ 3 \\ 5 \\ 7.5 \\ 10 \\ 15 \\ 20 \\ 30 \end{gathered}$	5 or 1	1.0	40 times rated primary current, 1 second	1.15 kV	4.0 kV	1.1	CC3P3-001 \square CC3P3-002 CC3P3-003 CC3P3-005 CC3P3-7P5 \square CC3P3-010 CC3P3-015 CC3P3-020 CC3P3-030
	$\begin{aligned} & 40 \\ & 50 \\ & \hline \end{aligned}$	5 or 1	1.0		1.15kV	4.0kV	1.2	CC3P3-040 \square CC3P3-050 \square

[^6]
CT with primary winding/CC3P

- Type number nomenclature

- Dimensions, mm

CC3P1: 1 to 30A

CC3P1: 40,50A CC3P2, CC3P3

CC3M rectangular hole throughtype current transformers Primary current: 150 to 6000A Secondary current: 5A

Description

CC3M CTs can be mounted vertically or horizontally by changing the position of the mounting base. Also, the busbar can be mounted directly using a mounting bracket as illustrated, so a busbar mounting angle or holes are not required.

Vertical mounting

Horizontal mounting

AF00-107

Types and ratings

Burden (VA)	Rated primary current (A)	Secondary current (A)	Accuracy class	Thermal limit current	Max. voltage (kV rms.)	Dielectric strength (kV 1 min.)	$\begin{aligned} & \text { Mass } \\ & \text { (kg) } \end{aligned}$	Type
5	150	5	1.0	40 times rated primary current	1.15 kV	4.0kV	2.1	CC3M1-1505
	$\begin{aligned} & 200 \\ & 300 \end{aligned}$						1.1	$\begin{aligned} & \hline \text { CC3M1-2005 } \\ & \text { CC3M1-3005 } \\ & \hline \end{aligned}$
	$\begin{aligned} & 400 \\ & 500 \\ & 600 \end{aligned}$						0.6	$\begin{aligned} & \text { CC3M1-4005 } \\ & \text { CC3M1-5005 } \\ & \text { CC3M1-6005 } \end{aligned}$
15	150	5 or 1	1.0	40 times rated primary current	1.15 kV	4.0kV	2.1	CC3M2-150■
	$\begin{aligned} & 200 \\ & 250 \\ & 30 \end{aligned}$	5 or 1	1.0		1.15kV	4.0kV	1.1	CC3M2-200 \square CC3M2-250 CC3M2-300
	$\begin{aligned} & 400 \\ & 500 \\ & \hline \end{aligned}$	5 or 1	1.0		1.15 kV	4.0kV	0.6	$\begin{aligned} & \text { CC3M2-400 } \square \\ & \text { CC3M2-500 } \end{aligned}$
	$\begin{aligned} & 600 \\ & 750 \\ & 800 \end{aligned}$						0.5	$\begin{aligned} & \text { CC3M2-600 } \\ & \text { CC3M2-750 } \\ & \text { CC3M2-800 } \end{aligned}$
	$\begin{aligned} & \hline 1000 \\ & 1200 \\ & 1500 \\ & 2000 \\ & \hline \end{aligned}$						1.2	CC3M2-10X CC3M2-12X CC3M2-15X CC3M2-20X
40	$\begin{array}{r} 200 \\ 250 \\ \hline \end{array}$	5 or 1	1.0	40 times rated primary current	1.15 kV	4.0kV	2.3	$\begin{aligned} & \text { CC3M3-200 } \square \\ & \text { CC3M3-250 } \end{aligned}$
	$\begin{aligned} & 300 \\ & 400 \\ & 500 \end{aligned}$	5 or 1	1.0		1.15 kV	4.0kV	1.1	CC3M3-300 CC3M3-400 CC3M3-500
	$\begin{aligned} & 600 \\ & 750 \end{aligned}$	5 or 1	1.0		1.15 kV	4.0kV	1.1	$\begin{aligned} & \text { CC3M3-600 } \\ & \text { СС3M3-750 } \end{aligned}$
	800						0.9	CC3M3-800■
	1000	5 or 1	1.0		1.15 kV	4.0kV	1.3	CC3M3-10X \square
	1200						1.2	CC3M3-12X \square
	2000						1.5	$\begin{aligned} & \text { CC3M3-15X } \square \\ & \text { CC3M3-20X } \end{aligned}$
	$\begin{aligned} & \hline 2500 \\ & 3000 \\ & 4000 \end{aligned}$	5	1.0		1.15 kV	4.0kV	4.8	$\begin{aligned} & \text { CC3M3-25X5 } \\ & \text { CC3M3-30X5 } \end{aligned}$
							6.3	CC3M3-40X5
	$\begin{aligned} & 5000^{* 2} \\ & 6000^{* 2} \end{aligned}$	5	1.0		1.15kV	4.0kV	14	$\begin{aligned} & \text { CC3M3-50X5 } \\ & \text { CC3M3-60X5 } \end{aligned}$

Notes: *1 Busbar mounting brackets are sold separately. When ordering, specify the CT type number and rated primary current. If the rated primary current is 1000 to 2000A, also specify the number of busbars required.
${ }^{* 2}$ Epoxy resin mold is used to isolate rated primary currents of 5000 or 6000A.

- CC3M CTs are mounted vertically at the factory.
- Replace the \square mark by the secondary current code. 5: 5A 1: 1A

Through-type CT/CC3M

- Type number nomenclature

■ Ordering information

Specify the following:

1. Type number
2. Busbar mounting bracket if required. Primary current

- Dimensions, mm
- Vertical mounting

CC3M1: 150 to 300A CC3M2: 200 to 300A
CC3M3: 300 to 500A

CC3M1: 400 to 600A CC3M2: 400 to 750A

CC3M2: 150A
CC3M3: 200, 250A

CC3M2: 800A CC3M3: 600 to 800A

Fuji Electric FA Components \& Systems Co., Ltd./D \& C Catalog Information subject to change without notice

- Horizontal mounting

CC3M1: 150 to 300A CC3M2: 200 to 300A
CC3M3: 300 to 500A

CC3M1: 400 to 600A CC3M2: 400 to 750A

CC3M2: 150A
CC3M3: 200, 250A

CC3M2: 800A CC3M3: 600 to 800A

- Dimensions, mm
- Vertical mounting

CC3M2, CC3M3: 1000 to 2000A

CC3M3: 2500 to 4000A

CC3M3: 5000, 6000A

- Horizontal mounting CC3M2, CC3M3: 1000 to 2000A

CC3M3: 2500 to 4000A

CC3M3: 5000, 6000A

■ Dimensions, mm

Direct busbar mounting

CC3M2 CTs with a rated primary current of 150A or CC3M3 CTs with a rated primary current of $200 \mathrm{~A}, 250 \mathrm{~A}$ or 4000 to 6000 A cannot be mounted directly to a busbar because the CT is too heavy for the cross section of the busbar.

The busbar must be located in the center of the through hole of the CT. Be sure that the busbar does not come into contact with the wall of the through hole.

- Single busbar mounting

CC3M1: 150 to 600A CC3M2: 200 to 2000A CC3M3: 300 to 2000A

Type	Primary current (A)	Bracket type	A	B	C	D	E	F	G	H	J	N	P
CC3M1	150 to 300	CC3M33	5 to 10	33.5	75	7.5	74	6.5	110	8.5	90	50	46
	400 to 600	CC3M22	5 to 10	26.5	61	9.5	73.5	7	90.5	9.5	81	50	46
CC3M2	200 to 300	CC3M33	5 to 10	33.5	75	7.5	74	6.5	110	8.5	90	50	46
	400 to 750	CC3M22	5 to 10	26.5	61	9.5	73.5	7	90.5	9.5	81	50	46
	800	CC3M34	5 to 10	27.5	65	9	79	6.5	121	9	107	75	51
	1000 to 2000	CC3M35	6 to 12	43.5	97	5.5	80.5	7	139	10	129	100	51
CC3M3	300 to 500	CC3M33	5 to 10	33.5	75	7.5	74	6.5	110	8.5	90	50	46
	600 to 800	CC3M34	5 to 10	27.5	65	9	79	6.5	121	9	107	75	51
	1000 to 2000	CC3M35	6 to 12	43.5	97	5.5	80.5	7	139	10	129	100	51

- Two-busbar mounting

CC3M2, CC3M3: 1000 to 3000A

Primary current (A)	Bracket type	A	B	C	D	E	F	G	H	J	N	P	R
1000, 1200, 1500, 2000	CC3M36	15 to 24	39	97	5.5	80.5	7	139	10	129	100	51	Approx. 40
2500, 3000	CC3M37	15 to 45	72	162	4	102	17	223	11	210	150	68	Approx. 60

Fuji Electric FA Components \& Systems Co., Ltd./D \& C Catalog

Split type current transformers, CC2
Primary current: 5 to 1200A
Secondary current: 7.34 mA to 1 A

Description

The CC2D and CC2C are split-type current transformers. The CT can be mounted to existing panels, such as control centers or load centers, to measure or monitor wattage. These CTs can be mounted without removing existing cables for easier installation.
Five rated burdens are available: $0.26 \mathrm{mVA}, 44.4 \mathrm{mVA}$, $0.18 \mathrm{VA}, 0.5 \mathrm{VA}$

■ Types and ratings

Description	Burden	Rated primary current (A)	Secondary current	Dia. of hole (mm)	Overcurrent resistance (A)	Connection	Mass (g)	Type
Split square	0.2693 mVA Load resistance 5Ω	5	7.34 mA	10	$40 \mathrm{ln} / 1.0 \mathrm{~s}$	Heat-resistant IV cable AWG22 1000mm supplied	45	CC2D81-0057
	26.93 mVA Load resistance 5Ω	50	73.4 mA	10	$10 \mathrm{ln} / 1.0 \mathrm{~s}$		45	CC2D81-0506
	44.4 mVA Load resistance 10Ω	200	66.67 mA	24	$40 \mathrm{ln} / 1.0 \mathrm{~s}$	Heat-resistant IV cable AWG18 1000mm supplied	200	CC2D65-2008
	0.18VA Load resistance 10Ω	400	133.33 mA	36			300	CC2D54-4009
Split toroida	0.5VA Load resistance 5Ω	$\begin{aligned} & 100 \\ & 200 \\ & 400 \end{aligned}$	1A	36			300	CC2D74-1001 CC2D74-2001 CC2D74-4001
		$\begin{array}{r} 800 \\ 1200 \\ \hline \end{array}$	1A	60			500	$\begin{aligned} & \text { CC2C76-8001 } \\ & \text { CC2C76-12X1 } \end{aligned}$

Performance

Application	Type	Ratio error	Phase difference	Insulation resistance	Dielectric strength	Output protection
For F-MPC	$\begin{aligned} & \text { CC2D81-0057 } \\ & \text { CC2D81-0506 } \end{aligned}$	$\begin{aligned} & \pm 1 \% \ln \\ & \pm 1.5 \% / 0.2 \mathrm{ln} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 150 ' \pm 90^{\prime} / \mathrm{ln} \\ & 180^{\prime} \pm 120^{\prime} / 0.2 \mathrm{In} \\ & \hline \end{aligned}$	100M Ω (500V DC megger)	2000V AC/1min, between sensor core and output	Not provided
	$\begin{aligned} & \hline \text { CC2D65-2008 } \\ & \text { CC2D54-4009 } \end{aligned}$	$\begin{aligned} & \pm 1 \% \ln \\ & \pm 1.5 \% / 0.2 \ln \end{aligned}$	$\begin{aligned} & \pm 60^{\prime} / \mathrm{ln} \\ & \pm 90^{\prime} / 0.2 \mathrm{ln} \end{aligned}$	$100 \mathrm{M} \Omega$ (500V DC megger)	2000V AC/1min, between sensor core and output	Provided, built-in clamping diode $\pm 3 \mathrm{Vp}$
General purpose	CC2D74-1001	$\begin{aligned} & \pm 1 \% \ln \\ & \pm 1.5 \% / 0.2 \mathrm{ln} \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 80^{\prime} / \mathrm{In} \\ & \pm 100^{\prime} / 0.2 \mathrm{ln} \end{aligned}$	$100 \mathrm{M} \Omega$ (500V DC megger)	2000V AC/1min, between sensor core and output	Provided, built-in clamping diode $\pm 1.4 \mathrm{Vp}$
	CC2D74-2001	$\begin{aligned} & \pm 1 \% \ln \\ & \pm 1.5 \% / 0.2 \ln \end{aligned}$				
	CC2D74-4001	$\begin{aligned} & \pm 1 \% \ln \\ & \pm 1.5 \% / 0.2 \mathrm{ln} \end{aligned}$				
	$\begin{aligned} & \hline \text { CC2C76-8001 } \\ & \text { CC2C76-12X1 } \end{aligned}$	$\begin{aligned} & \pm 1 \% \ln \\ & \pm 1.5 \% / 0.2 \ln \end{aligned}$	$\begin{aligned} & \pm 80^{\prime} / \mathrm{In} \\ & \pm 100^{\prime} / 0.2 \mathrm{ln} \end{aligned}$	$100 \mathrm{M} \Omega$ (500V DC megger)	2000V AC/1min, between sensor core and output	Provided, built-in clamping diode $\pm 1.4 \mathrm{Vp}$

\square Dimensions, mm

- Split-toroidal CC2D81

CC2D54, 74

CC2D65

CC2C76

■ Ordering information

Specify the following:

1. Type number

Instrument Transformers

Voltage transformers/CD32, 34

CD32 and CD34 potential transformers

Primary: 220V, 440V
Secondary: 110V

Description

The CD32 and CD34 transformers are of double-mold structure that provide excellent characteristics, such as thermal resistance and moisture resistance.
VTs with a fuse of a 100kA interrupting capacity have been added to the series. The accuracy class of a type with a rated burden of 15 VA is $1.0,1 \mathrm{P}$ and that of a type with a rated burden of 50VA is
 3.0, 3P.

A transparent insulation cover is available for the terminal and fuse mounting blocks.

- Types and ratings

Burden (VA)	Primary voltage (V)	Secondary voltage (V)	Accuracy class	Dielectric strength	$\begin{aligned} & \text { Fuse* } \\ & \text { Type } \end{aligned}$	Rating	Applicable load (VA, Max.)	Mass (kg)	Type
15	$\begin{aligned} & 220,50 / 60 \mathrm{~Hz} \\ & 440,50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \hline 110 \\ & 110 \end{aligned}$	1.0 - 1P	2000V, 1 minute 3000V, 1 minute	CD3F	$600 \mathrm{~V}, 2 \mathrm{~A}(\mathrm{~T})$ IC: 100kA	100	3.5	$\begin{aligned} & \hline \text { CD32F-21 } \\ & \text { CD32F-41 } \end{aligned}$
	$\begin{array}{\|l\|} \hline 220,50 / 60 \mathrm{~Hz} \\ 440,50 / 60 \mathrm{~Hz} \end{array}$	$\begin{aligned} & 110 \\ & 110 \end{aligned}$	$1.0 \cdot 1 \mathrm{P}$	2000V, 1 minute 3000V, 1 minute	Not provided		100	3.5	$\begin{aligned} & \text { CD32N-21 } \\ & \text { CD32N-41 } \end{aligned}$
50	$\begin{array}{\|l} \hline 220,50 / 60 \mathrm{~Hz} \\ 440,50 / 60 \mathrm{~Hz} \end{array}$	$\begin{aligned} & 110 \\ & 110 \end{aligned}$	3.0-3P	2000V, 1 minute 3000V, 1 minute	CD3F	$600 \mathrm{~V}, 2 \mathrm{~A}(\mathrm{~T})$ IC: 100kA	100	3.5	$\begin{aligned} & \text { CD34F-21 } \\ & \text { CD34F-41 } \end{aligned}$
	$\begin{array}{\|l} \hline 220,50 / 60 \mathrm{~Hz} \\ 440,50 / 60 \mathrm{~Hz} \end{array}$	$\begin{aligned} & 110 \\ & 110 \end{aligned}$	$3.0 \cdot 3 P$	2000V, 1 minute 3000V, 1 minute	Not provided		100	3.5	$\begin{aligned} & \text { CD34N-21 } \\ & \text { CD34N-41 } \end{aligned}$

Notes: T: Fuse for transformer protection. IC: Interrupting capacity

* When the load limit is 100 VA , the maximum tolerance is 5% or less.

■ Characteristics

Type		CD32F, 34F
Primary voltage (V)		220,440
Applicable load	Continuos rating	
(VA, max.)	2-second rating (For transformer protection)	100
Error at max.	Continuos rating	
applicable load (\%)	2-second rating (For transformer protection)	-10
Fuse	Rated current	(A)
	Interrupting capacity	(kA)
\% impedance	\% resistance voltage	(\%)
voltage	\% reactance voltage	(\%)
	\% impedance voltage	(\%)

Note: The 2 -second rating is the value provided considering a 10-cycle duty on condition that the current is provided for 0.2 s at 1.8 s intervals.

■ Type number nomenclature

Ordering information
Specify the following:

1. Type number

Dimensions, mm

CD32F, CD34F

Panel drilling

With insulation cover

CD32N, CD34N

Panel drilling

With insulation cover

Optional accessories

- Insulation cover

Type: CD3C
Applicable VT: CD32, 34

Mounting insulation cover

Slightly open the A-part of the insulation cover outward. Mount the cover to the VT so that the protruding portions of the VT are inserted into the holes of the insulation cover.

- Insulation caps for low-voltage current transformer

Type: SB-4064-23
Applicable CT: CC3L, CC3P and CC2N
Insulation caps can be mounted without removing the crimp terminals on the CT.
The terminals are completely covered with the insulation caps so that no live part is exposed.
These caps are translucent to that the terminal connections can be checked externally.

Dimensions, mm

Automatic power factor regulator QC06E, QC12E

- Description

Automatic power factor regulator (APFR) is a device which is designed to maintain the target power factor by regulating lagging or leading current. The APFR is designed to monitor the reactive power within the circuit continuously and to provide ON/OFF signals automatically to control circuit breakers in a capacitor bank. In an electrical network such as an industrial plant using induction motors which produce reactive power, the power factor will drop. This will cause a power loss, a line voltage drop and other disadvantages. In conventional electrical systems the efficiency of transmission and distribution equipment is improved by installing fixed capacitors across the line. However, an over-compensation may arise when there is a light load, such as at night, which would result in an increase in line voltage and excess current. The APFR supervises the power factor in the system, and controls the power factors by switching capacitors ON or OFF as the situation requires in the face of a reactive leading or lagging load.

Low power loss

Correcting the power factor with a power capacitor reduces the line current. This also reduces the power loss caused by the resistances of the power cables and transformer windings.

Effective use of power receiving facility

Correcting the power factor with a power capacitor reduces the line current. Since this produces margins in the transformer capacity and the current-carrying capacity of cables, a heavier load can be carried without adding more facilities.

Stable supply voltage for long equipment service life

 A reactive power, especially a leading reactive power at a light load (at night), often produces an overvoltage and shortens the service life of lamps. Use an automatic power factor regulator to suppress a voltage decrease at a heavy load and a voltage increase at a light load.
Laborsaving unmanned operations

This regulator outputs capacitor connection and disconnection commands automatically to maintain an optimum power factor. The simple setup for this output saves labor applied to power factor correction.

Features

- Compact (DIN size) and lightweight

The DIN-size compact unit permits easy mounting hole on the panel and enhances work efficiency.
The 6-bank and 12-bank models have front panels of the same size ($144 \mathrm{~mm} \times 144 \mathrm{~mm}$). Since in the panel cutout hole sizes are also the same ($138 \mathrm{~mm} \times 138 \mathrm{~mm}$), it is possible to use panel cutout holes of one uniform size.

- 220 V and 440 V power supplies

The regulator can be connected to a 220 V or 440 V power supply. Set the voltage input switch on the front panel to the control power supply voltage being used.
Connect control power cables to the correct terminals of the terminal block in accordance with the control power supply voltage being used.

- Automatic setting of control level by microcomputer The mode and data are set simply by using four keys. The microcomputer automatically sets the levels at which capacitors should be connected or disconnected.
- Three types of capacitor connection and disconnection control by purpose

1. Cyclic control or optimum control (automatic

 selection)Under cyclic control, capacitors of the same capacitance are connected and disconnected in ascending order of capacitor number.
Under optimum control to keep the number of connections and disconnections minimal, a capacitance change is calculated from the measured reactive power and the target power factor and a capacitor of the nearest capacitance is connected or disconnected.
Either control is selected in accordance with the set capacitor capacitance.

2. Unconditional cyclic control

Capacitors are controlled cyclically, irrespective of their capacitances.

3. Multistep control

Capacitors having capacitances incremented in multiples of two (e.g. 1:2:2:2:2:2:, $1: 2: 4: 4: 4: 4$, and 1:2:4:8:8:8) are simultaneously connected or disconnected to optimize the capacitance with a minimal number of steps.

Power Factor Controllers
 Automatic power factor regulators
 QC06E and QC12E

- Useful functions

1. Polarity error diagnosis function

If a polarity error in wiring is detected, the regulator lights the alarm lamp and sounds the buzzer to indicate the miswiring.

2. Forced disconnection function

To protect capacitors from being damaged or reactors from being burnt by excessive harmonics, or to disconnect capacitors unconditionally at night, external time switch signals can be input to the regulator. The signals automatically disconnect the connected capacitors in proper order.

- Automatic capacitor disconnection at light load When the load of a power line decreases at night, the connected capacitors may increase the leading reactive power and cause an overvoltage.
A voltage increase on the power receiving side will shorten the service life of lamps and other load equipment.
To prevent an excessive leading power factor at a light load, the regulator automatically disconnects capacitors.

- Abundant regulator status information display

Automatic power factor regulators
QC06E and QC12E

- Specifications

Item		Specification	
		QC06E	QC12E
Voltage input	Frequency	50/60Hz	
	Rated voltage	200-220V/400-440V selectable	
	Allowable voltage fluctuation range	$\begin{aligned} & 170-264 \mathrm{~V} \text { at } 220 \mathrm{~V} \\ & 323-528 \mathrm{~V} \text { at } 440 \mathrm{~V} \end{aligned}$	
	Power consumption	13 VA at $220 \mathrm{~V}, 13 \mathrm{VA}$ at 440 V	15 VA at $220 \mathrm{~V}, 15 \mathrm{VA}$ at 440 V
Current input	Frequency	50/60Hz	
	Rated current	5A	
	Power consumption	1VA	
Reactive power control range	Connection control level (kvar)	Automatic setting in accordance with the target power factor	
	Disconnection control level (kvar)	Already-connected minimum capacitor capacitance $\times 1.2$ - connection control level (When the calculation result becomes negative, the disconnection control level is automatically set to 0).	
	Correct control range (kvar)	Already-connected minimum capacitor capacitance $\times 1.2$(Automatic setting)	
	Control error	± 0.05 (kvar) \times CT ratio (at 220 V input)	
Light-load disconnection control value		When the active power level falls below the numeric-input minimum load, the capacitor are disconnected successively from the capacitor banks in descending order of capacitance at disconnecting time intervals. When the minimum load is set to 0 , however, no capacitors are disconnected even when the active power level falls below the numeric-input minimum load. [Control error: ± 0.05 (kvar) \times CT ratio] (at 220 V input)	
Capacitor control output	No. of connectable banks	6 -circuit (NO contact common on one side)	12-circuit (NO contact common on one side)
	Applicable minimum load	1 V DC, 1mA	
	On/Off switching capacity	250V AC, 5A 30V DC, 5A 100V DC, 0.5A	
	Electrical life expectancy	Approx. 100.000 operations at $220 \mathrm{~V} \mathrm{AC}, \mathrm{2A} \mathrm{inductive} \mathrm{load}$	
Output control system		A1: Cyclic/optimum control, selectable automatically A2: Uncondentional cyclic control A3: Multistep control, 1:2:2:2:2:2----- A4: Multistep control, 1:2:4:4:4:4------ A5: Multistep control, 1:2:4:8:8:8------ (Control modes A3 to A5 are effective for C1 only 0 to 9999)	
Setting item		1. Bank capacitor capacitance C 1 to C 6 (Okvar *) (Modes 1 to 6) Output control system A3 to A5 are available only for bank C1.	Bank capacitor capacitance C 1 to C 12 (Okvar *) (Modes 1 to 9, o, b, c) Output control system A3 to A5 are available only for bank C1.
		2. Target power factor $\cos \theta=98 \%^{*}$ Mode F (85 to 100) 3. CT ratio 0^{*} Mode C (1 to 1200) 4. Control mode 1^{*} Mode A (1 to 5) 5. Minimum load okW^{*} Mode L (0 to 9999) 6. Delay time 300 sec. * Mode d (30, $60,120,300,600)$	
Display	Digital display	Current power factor (\%), reactive power (kvar) (no mode symbol: leading, -: lagging), active power (kW), primary voltage (V) and primary current (A) on 7 -segment LED panel.	
	Display error: 0.5A or less at CT input Power factor lead (+60\%) to lag (-60\%)	Power factor: $\pm 5 \%$ or less, Reactive/active power: $\pm 0.05 \mathrm{kvar} / \mathrm{kW} \times$ CT ratio or less (at 220 V input) Primary current: $\pm 0.1 \mathrm{~A} \times \mathrm{CT}$ ratio or less	
	Control status display (LED)	Light load: Active power equal to or lower than the light-load disconnection control level Lagging, leading, optimum: Reactive power lagging, leading, or optimum in the control range	
	Control output display (LED)	Lit: Control output ON, Unlit: Control output OFF	
Operating ambient temperature		-10 to $+55^{\circ} \mathrm{C}$	
Dielectric strength		2500V AC 1 minute (between all terminals and E terminal)	
Outline dimensions (mm)		Height: 144, Width: 144, Depth: 114.5	Height: 144, Width: 144, Depth: 140
Mass (kg)		Approx. 1.5	Approx. 1.8

[^7]
Power Factor Controllers
 Automatic power factor regulators QC06E and QC12E

1. Mode symbol

Displays the set mode (mode symbol) or the kind of measurement data.

2. Setting and measurement data

- Data setting mode

The digital LED display displays the following setting data:

Mode symbol	Setting item	Setting data	Setup at shipment
1 to 9	Capacitance of capacitor C1 to C9 *	0 to 9999kvar *1	0
o, b, c	Capacitance of capacitor C10, C11, C12 *6	0 to 9999kvar *1	0
A	Capacitor control system	1 to 5 *2	1
C	CT ratio	1 to 1200 *	0
F	Target power factor	85 to 100\%	98
L	Disconnection at light load	0 to 9999kW *4	0
d	Delay time	$\begin{aligned} & 30,60,120, \\ & 300, \text { or } 600 \mathrm{~s} \text { *5 } \\ & \hline \end{aligned}$	300

Notes:

*1 When the capacitance is set to 0 or 9999 , the control output contact goes ON for 0 or OFF for 9999 during automatic operation.
*2 See the table at right for the meanings of the capacitor control system numbers.
${ }^{*} 3$ The CT ratio is set to 0 when the regulator is shipped from the factory. Set this value to accommodate the use requirements. The regulator does not operate automatically when the set value is 0 or 1201 or greater.
*4 When the set value is 0 , the light-load disconnection function is not activated. To disconnect capacitors when the load becomes light, set the minimum capacitor capacitance.
*5 Select an optimum delay time for the capacitor discharging unit. (Set "300" or "600" if a discharging resistor is used.)
*6 The mode symbols are 1 to 6 (C1 to C6) for type QC06E and 1 to $9, o, b$, and c (C1 to C12) for type QC12E.

- Auto operation mode

When the Up ($\sqrt{\wedge}$) and Down ($\sqrt{\vee}$) keys are pressed at the same time, the LED display displays measurement data in the following order:

Model symbol	Display item	Measurement data display
$(-)^{* 7}$	Power factor	-0 to 100 to 0%
$(-)^{* 7}$	Reactive power	-9999 to 0 to $9999 \mathrm{kvar}{ }^{* 8}$
A	Active power	0 to $9999 \mathrm{~kW}{ }^{* 8}$
U	Primary voltage	0 to $9999 \mathrm{~V}{ }^{* 8}$
I	Primary current	0 to $6000(5 X 1200) \mathrm{A}$
	No display	-

Notes:
*7 No mode symbol is displayed for a lead; a negative sign (-) is displayed for a lag.
*8 The LED display always displays " 9999 " for any value greater than 9999.

Capacitor control system

Set value	Description
1	Cyclic/optimum control
2	Unconditional cyclic control
3	Multistep control (capacitance ratio: 1:2:2:2:2:2:2:2:2:2:2)
4	Multistep control (capacitance ratio: 1:2:4:4:4:4:4:4:4:4:4)
5	Multistep control (capacitance ratio: 1:2:4:8:8:8:8:8:8:8:8)

Automatic power factor regulators

 QC06E and QC12E
3. AUTO/SET mode

The green lamp lights in the auto operation mode and the red one in the data setting mode.

4. Power factor status

Light load: The yellow lamp lights when the active power of the circuit is equal to or lower than the set level for light-load disconnection.

\triangle Lead:

The red lamp lights when the reactive power of the circuit is leading, compared to the set level for disconnection.

Acceptable:

The green lamp lights when the reactive power of the circuit is within the optimum control range.
Lag ∇ :
The red lamp lights when the reactive power of the circuit is lagging, compared to the set level for connection.

5. Unit of setting or measurement data

A green lamp lights at \%, kvar, kW, V, or A.

6. Capacitor connection status

The red lamps light at the capacitors for which the capacitor control output contacts are ON (make) and go out at the capacitors for which the contacts are OFF (break).

7. Input voltage selection switch

Set this switch to "200V" for 200/220V input power or " 400 " for $400 / 440 \mathrm{~V}$ input power.

8. Polarity diagnosis switch

The polarity switch must initially be toggled to " + ". Toggle the polarity diagnosis switch to the right to check the voltage or current input polarity. If the polarity is incorrect, " $\mathrm{C} \square \square 3^{\prime}$ " is displayed and the buzzer sounds.

9. Polarity switch

If the voltage or current input polarity is incorrect, toggle this switch to "-" and press the enter key to clear the error display and stop the buzzer. The regulator then operates normally because the input polarity is handled as being reversed.

10. AUTO/SET select key

Press this key to select the auto operation or data setting mode.

11. Up/down keys

Use these keys to select a data setting mode.
Use these keys to increment (+1) or decrement (-1) a numeric value in each setting mode.

12. Enter key

After selecting a data setting mode, start numeric input. The numeric display changes from being continuously lit to blinking.
Press this key to confirm a set value in each data setting mode. The value is stored in the internal memory and the numeric display changes from blinking to being continuously lit.

Press two keys of the four keys, ($\frac{\mathrm{A} \mathrm{AVOO}_{\text {STO }}}{\checkmark} \wedge$ and ENT), at the same time for the following operation or display:

- Data setting mode

Clears the set value to 0 . (This key operation is effective only when the mode symbol is 1 to $9, o, b, c, C$, or L and the numeric display is blinking.)

Resets the set value to the shipping setup. (This key operation is effective only when the mode symbol is 1 to 9,0 , $\mathrm{b}, \mathrm{c}, \mathrm{C}$, or L and the numeric display is blinking.)
(Keep the keys depressed for five seconds or longer.)

Auto operation mode

Changes the measurement data display. (Each time the keys are pressed, the display changes in the following order: power factor, reactive power, active power, primary voltage, primary current, and no display. The initial display at poweron is always power factor data.

Tests a capacitor connection. (Press the keys at the same time for reactive power lag display. Keep the keys depressed to connect the capacitors in the specified order.)

Tests a capacitor disconnection. (Press the keys at the same time for reactive power lead display. Keep the keys depressed to disconnect the capacitors in the specified order.)

Type number nomenclature and ordering code JD006 - E

Series
E : E series
No. of connectable banks
JD006: QC06, 6 circuits
JD012: QC12, 12 circuits

Ordering information

Specify the following:

1. Type number or ordering code
2. Input voltage and current
3. Operating voltage
4. Number of connectable capactor banks

Power Factor Controllers
 Automatic power factor regulators
 QC06E and QC12E

■ Operation of automatic power factor regulator

- Cyclic control

Under cyclic control/optimum control, the regulator connects and disconnects capacitors of the same capacitance cyclically.
Under unconditional cyclic control, the regulator connects and disconnects capacitors of different capacitances cyclically, irrespective of the set capacitance.

1. Capacitor connection

When the reactive power exceeds the level at which more capacitors should be connected, the red lag lamp lights. If the red lamp remains lit for the set delay time or longer, the corresponding capacitor control output goes ON and the red lamp for the capacitor bank lights.
When the reactive power of the circuit is still over the connection control level and the red lag lamp remains lit, the capacitor control output for the next capacitor goes ON after the delay time. The capacitor control outputs go ON one by one at the delay time intervals until the reactive power level of the circuit falls within the allowable range.

2. Capacitor disconnection

The red lead lamp lights when the circuit load decreases and the connected capacitors increase the leading reactive power of the circuit beyond the level at which a capacitor should be disconnected. When the red lead lamp remains lit for the set delay time or longer, the corresponding capacitor control output goes OFF and the red lamp for the capacitor bank goes OFF.
The capacitors are disconnected in the order of their connection.
The capacitor control output for each capacitor is turned OFF at every delay time interval until the reactive power level falls within the allowable range.

Output operation by the connecting or disconnecting control signals for capacitors

Leading \triangle								\bigcirc	\bigcirc	\bigcirc	\bigcirc				\bigcirc		\bigcirc	\bigcirc		\bigcirc	
Acceptable	\bigcirc																				
Lagging ∇		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc					\bigcirc	\bigcirc	\bigcirc		\bigcirc			\bigcirc		\bigcirc
C1		$\begin{aligned} & \mathrm{O} \\ & \mathrm{ON} \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	OFF				$\begin{aligned} & \mathrm{O} \\ & \mathrm{ON} \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	OFF			
C2				\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	OFF				$\begin{array}{\|l} \hline \mathrm{O} \\ \mathrm{ON} \\ \hline \end{array}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	OFF	
C3				$\begin{gathered} \mathrm{O} \\ \mathrm{ON} \end{gathered}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	OFF					\bigcirc						
C4					$\begin{aligned} & \mathrm{O} \\ & \mathrm{ON} \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	OFF					$\begin{aligned} & \mathrm{O} \\ & \mathrm{ON} \\ & \hline \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
C5						ON	\bigcirc	OFF				ON	\bigcirc	\bigcirc							
C6							O	\bigcirc	OFF				O								

O: Shows that indicators are lit.

- Optimum control

Under optimum control, the regulator connects or disconnects the capacitor with the capacitance closest to the change of reactive power among capacitors of different capacitances. If there are two or more capacitors of the same capacitance, the regulator connects or disconnects the capacitors cyclically for optimum control (the number of switchings) match.

1. Capacitor connection

The red lag lamp lights when the reactive power level exceeds the level at which more capacitors should be connected. The regulator calculates the difference between the current reactive power and the level at which more capacitors should be connected, and integrates the calculated value for the set delay time. The average value per unit time is calculated from the integrated total and a capacitor having the capacitance closest to the average value is selected. The capacitor control output for the capacitor is turned ON and the red lamp of the capacitor bank lights.
The regulator continues integrating and averaging the differences between the current reactive power level and the level at which more capacitors should be connected, and selecting optimum capacitors. The capacitor control output is turned ON repeatedly until the reactive power of the circuit falls within the allowable range.

Figure 1 shows an example of a capacitor connection control with a load variation pattern.

2. Capacitor disconnection

When the circuit load decreases, the already-connected capacitors increase the leading reactive power level. If the reactive power level exceeds the level at which capacitors should be disconnected, the red lead lamp lights. The regulator calculates the difference between the current reactive power level and the level at which capacitors should be disconnected, and integrates the calculated value for the set delay time. The average value per unit time is calculated from the integrated total and a capacitor having the capacitance closest to the average value is selected. The capacitor control output for the capacitor is turned OFF and the red lamp of the capacitor bank goes OFF.

The regulator continues integrating and averaging the differences between the current reactive power level and the level at which capacitors should be disconnected, and selecting optimum capacitors. The capacitor control
output is turned OFF repeatedly until the reactive power level of the circuit falls within the allowable range.
Figure 2 shows an example of capacitor disconnection control with a load variation pattern.

Fig. 1

Fig. 2

Power Factor Controllers
 Automatic power factor regulators QC06E and QC12E

- Multistep control (step-by-step control)

Under multistep control, the regulator connects or disconnects in units of the minimum capacitance set at C1 in accordance with the changes of the reactive power to approximate the power factor to the target value.
The power factor at a light load can be controlled in the same way.

1. Capacitor connection

When the reactive power level exceeds the level at which more capacitors should be connected, the red lag lamp lights. If the red lamp remains lit for the set delay time or longer, the capacitor control outputs for the next step go ON or OFF and the red lamps of the capacitors light or go OFF. If the reactive power level of the circuit is still over the level at which more capacitors should be connected and the red lag lamp remains lit, the capacitor control outputs for the next capacitor go ON or OFF after the set delay time.

The capacitor control output is turned ON or OFF sequentially at the delay time intervals until the reactive power level of the circuit falls within the allowable range.

2. Capacitor disconnection

The red lead lamp lights when the load decreases and the connected capacitors increase the leading reactive power level of the circuit beyond the level at which capacitors should be disconnected. When the red lamp remains lit for the set delay time or longer, the capacitor control outputs for the next step go OFF or ON and the red lamps of the capacitor banks go OFF or light.
The capacitor control output is turned OFF or ON sequentially at the delay time intervals until the reactive power level of the circuit falls within the allowable range.

Capacitor connection and disconnection signal output operation Signal output in multistep control mode/QC06E

Example 1

Lag/Lead	Step	C1=10kvar C2=20kvar C3=20kvar C4=20kvar C5=20kvar C6=20kvar Control system [3] Capacitance ratio $\mathrm{C} 1: \mathrm{C} 2: \mathrm{C} 3: \mathrm{C} 4: \mathrm{C} 5: \mathrm{C} 6=1: 2: 2: 2: 2: 2$							Lag/Lead	C1=10kvar C2=20kvar C3=20kvar C4=20kvar C5=20kvar C6=20kvar Control system [3] Capacitance ratio C1:C2:C3:C4:C5:C6=1:2:2:2:2:2						
		C1	C2	C3	C4	C5	C6	Total capacitance		C1	C2	C3	C4	C5	C6	Total capacitance
$\overline{\text { Lag } \nabla}$	1	\bigcirc						10kvar	Lead \triangle	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	110kvar
	2		\bigcirc					20			\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	100
	3	\bigcirc	\bigcirc					30		\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc	90
	4		\bigcirc	\bigcirc				40				\bigcirc	\bigcirc	\bigcirc	\bigcirc	80
	5	\bigcirc	\bigcirc	\bigcirc				50		\bigcirc			\bigcirc	\bigcirc	\bigcirc	70
	6		\bigcirc	\bigcirc	\bigcirc			60					\bigcirc	\bigcirc	\bigcirc	60
	7	\bigcirc	\bigcirc	\bigcirc	\bigcirc			70		\bigcirc				\bigcirc	\bigcirc	50
	8		\bigcirc	\bigcirc	\bigcirc	\bigcirc		80						\bigcirc	\bigcirc	40
	9	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		90		\bigcirc					\bigcirc	30
	10		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	100							\bigcirc	20
	11	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	110		\bigcirc						10

Example 2

Lag/Lead	Step	C1=10kvar C2=20kvar C3=40kvar C4=40kvar C5=40kvar C6=40kvar Control system [4] Capacitance ratio C1:C2:C3:C4:C5:C6=1:2:4:4:4:4							Lag/Lead	C1=10kvar C2=20kvar C3=40kvar C4=40kvar C5=40kvar C6=40kvar Control system [4] Capacitance ratio C1:C2:C3:C4:C5:C6=1:2:4:4:4:4						
		C1	C2	C3	C4	C5	C6	Total capacitance		C1	C2	C3	C4	C5	C6	Total capacitance
$\overline{\text { Lag } \nabla}$	1	\bigcirc						10kvar	Lead \triangle	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	190kvar
	2		\bigcirc					20			\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	180
	3	\bigcirc	\bigcirc					30		\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc	170
	4			\bigcirc				40				\bigcirc	\bigcirc	\bigcirc	\bigcirc	160
	5	\bigcirc		\bigcirc				50		\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	150
	6		\bigcirc	\bigcirc				60			\bigcirc		\bigcirc	\bigcirc	\bigcirc	140
	7	\bigcirc	\bigcirc	\bigcirc				70		\bigcirc			\bigcirc	\bigcirc	\bigcirc	130
	8			\bigcirc	\bigcirc			80					\bigcirc	\bigcirc	\bigcirc	120
	9	\bigcirc		\bigcirc	\bigcirc			90		\bigcirc	\bigcirc			\bigcirc	\bigcirc	110
	10		\bigcirc	\bigcirc	\bigcirc			100			\bigcirc			\bigcirc	\bigcirc	100
	11	\bigcirc	\bigcirc	\bigcirc	\bigcirc			110		\bigcirc				\bigcirc	\bigcirc	90
	12			\bigcirc	\bigcirc	\bigcirc		120						\bigcirc	\bigcirc	80
	13	\bigcirc		\bigcirc	\bigcirc	\bigcirc		130		\bigcirc	\bigcirc				\bigcirc	70
	14		\bigcirc	\bigcirc	\bigcirc	\bigcirc		140			\bigcirc				\bigcirc	60
	15	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		150		\bigcirc					\bigcirc	50
	16			\bigcirc	\bigcirc	\bigcirc	\bigcirc	160							\bigcirc	40
	17	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc	170		\bigcirc	\bigcirc					30
	18		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	180			\bigcirc					20
	19	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	190		0						10

Power Factor Controllers
Automatic power factor regulators QC06E and QC12E

Example 3

Lag/Lead	Step	C1=10kvar C2=20kvar C3=40kvar C4=80kvar C5=80kvar C6=80kvar Control system [5] Capacitance ratio C1:C2:C3:C4:C5:C6=1:2:4:8:8:8							Lag/Lead	```C1=10kvar C2=20kvar C3=40kvar C4=80kvar C5=80kvar C6=80kvar Control system [5] Capacitance ratio C1:C2:C3:C4:C5:C6=1:2:4:8:8:8```						
		C1	C2	C3	C4	C5	C6	Total capacitance		C1	C2	C3	C4	C5	C6	Total capacitance
$\overline{\text { Lag } \nabla}$	1	0						10kvar	Lead \triangle	\bigcirc	0	0	0	\bigcirc	\bigcirc	310kvar
	2		0					20			\bigcirc	0	0	\bigcirc	\bigcirc	300
	3	0	\bigcirc					30		\bigcirc		0	0	0	0	290
	4			0				40				0	0	0	0	280
	5	0		0				50		\bigcirc	\bigcirc		0	\bigcirc	\bigcirc	270
	6		0	0				60			0		0	0	0	260
	7	0	\bigcirc	\bigcirc				70		\bigcirc			\bigcirc	\bigcirc	\bigcirc	250
	8				\bigcirc			80					0	\bigcirc	\bigcirc	240
	9	0			\bigcirc			90		\bigcirc	0	0		\bigcirc	\bigcirc	230
	10		\bigcirc		\bigcirc			100			0	0		\bigcirc	\bigcirc	220
	11	\bigcirc	\bigcirc		\bigcirc			110		\bigcirc		0		\bigcirc	\bigcirc	210
	12			0	\bigcirc			120				0		\bigcirc	\bigcirc	200
	13	0		0	\bigcirc			130		\bigcirc	0			\bigcirc	0	190
	14		0	\bigcirc	\bigcirc			140			0			\bigcirc	0	180
	15	0	0	\bigcirc	0			150		\bigcirc				\bigcirc	\bigcirc	170
	16				0	0		160						0	\bigcirc	160
	17	0			\bigcirc	\bigcirc		170		\bigcirc	0	0			0	150
	18		0		\bigcirc	0		180			0	0			\bigcirc	140
	19	0	0		0	0		190		\bigcirc		0			\bigcirc	130
	20			\bigcirc	\bigcirc	\bigcirc		200				0			\bigcirc	120
	21	0		\bigcirc	0	0		210		\bigcirc	0				\bigcirc	110
	22		0	0	0	0		220			0				\bigcirc	100
	23	0	\bigcirc	O	\bigcirc	0		230		\bigcirc					\bigcirc	90
	24				\bigcirc	0	0	240							0	80
	25	0			0	0	0	250		0	0	0				70
	26		\bigcirc		0	0	0	260			0	0				60
	27	0	0		0	\bigcirc	0	270		0		0				50
	28			0	0	\bigcirc	0	280				0				40
	29	0		\bigcirc	\bigcirc	\bigcirc	0	290		\bigcirc	0					30
	30		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	300			0					20
	31	0	0	0	0	0	0	310		0						10

- Terminals

Used for	Terminal symbol	Terminal name	Description
Input	$\begin{aligned} & \text { P2 (at } 220 \mathrm{~V} \text {) } \\ & \text { P3 } \end{aligned}$	Voltage input (220V)	Connect this terminal directly to a 220V power line. Note: The current for the internal control power supply flows between terminal P2 and P3.
	$\begin{aligned} & \text { P2 (at 440V) } \\ & \text { P3 } \end{aligned}$	Voltage input (440V)	Connect this terminal directly to a 440 V power line. Note: The current for the internal control power supply flows between terminal P2 and P3.
	1S, 1L	Current input	Connect these terminals to the secondary side of a CT.
	E	Ground	Grounding resistance: 100Ω or less
Contact output	COM	Capacitor control output common	Connect the common cable for capacitor connection and disconnection signals. Be sure to connect the upper and middle COM terminals (QC12E)
	C 1 to C12	Control output terminal for C 1 to C12	This terminal output control signals to the capacitor control section (Ex. VMC*1) connected to the terminal.
External forced disconnection signal input *2	OFF +	Forced disconnection signal input (positive)	Connect this terminal to one side of a contact for a contact signal input. Connect this terminal to a collector for NPN transistor open-collector signal input.
	OFF -	Forced disconnection signal input (negative)	Connect this terminal to opposing side of a contact for a contact signal input. Connect this terminal to 0 V for NPN transistor open-collector signal input.

Notes:
*1 VMC: Vacuum magnetic contactor
2 Signal input circuits
ON voltage VL < 1. OV
Drain current lo $=$ Approx. 10 mA

QC06E and QC12E

Upper terminal arrangement	Main circuit								
	C6	C5	C4	C3	C2	C1	COM	OFF-	OFF+
	Control circuit								
Lower terminal arrangement	* NC	* NC	1S	1L	* NC	P3	P2 (220V)	P2 (440V)	E

QC12E only
Main circuit
Middle terminal arrangement

C12	C11	C10	C9	C8	C7	COM

Note: For QC12E, the upper and middle COM terminals are not connected internally. Be sure to connect these terminals.

Automatic power factor regulators QC06E and QC12E

\square Key operations

－Data setting mode

Operation	Key operation	Remarks
Selecting a setting item	人 or V	
Setting a value	人 ${ }^{\text {V E ENT }}$	
Incrementing the data value（＋1）	－	Control mode（Mode A）： 1 to 5 Target power factor（Mode F）： 85 to 100 Delay time（Mode d）：30，60，120，300，or 600 For other modes，be sure to enter a four－digit numeric value． The input order is thousands，hundreds，tens，then ones． Change the set value if a high－order digit is not required，skip the digit by pressing the ENT key，then enter a numeric value（1 to 9 ）to the next digit． （The skipped digit is not displayed．）
Decrementing the data value（ -1 ）	\checkmark	
Shifting the digit up	ENT	
Enter capacitance 0 value	ENT	When the value＂0＂is blinking，press the EENT key four times to set the value．
Determining the set value	ENT	
Clearing the set value to 0	$\Delta+V \text { Press at the } \begin{aligned} & \text { same time. } \end{aligned}$	This key operation is effective only when the mode symbol is 1 to $9, o, b, c, C$ ， or L and numeric display is blinking．
Resetting all set value	\square $+$ \square Press for five seconds or longer at the same time．	This key operation is effective only when the mode symbol is 1 to $9, o, b, c, C$ ， or L and numeric display is blinking． （All the set items are reset to the shipping setup．）
Stopping the buzzer giving error notification during diagnosis		Any key may be pressed．
Changing mode to auto operation		

Auto operation mode

Operation	Key operation	Remarks
Changing measurement display	$A+v$ Press at the same time．	The measurement data display changes cyclically in the following order： Power factor，reactive power，active power，primary voltage，primary current， and no display．The initial display at power－on is power factor data．
Testing capacitor connection	人 + ENT Press con－ tinually at the same time．	For the operation sequence，operation time，and other details，refer to the instruction manual．
Testing capacitor disconnection	\qquad \qquad Press con－ tinually at the same time．	
Stopping the buzzer giving error notification during diagnosis		Any key may be pressed．
Changing mode to data setting		

Power Factor Controllers
 Automatic power factor regulators QC06E and QC12E

- Data setting procedure

- Set the following items

1. Capacitor capacitance: Capacitor 1 (150kvar) to 3 (150kvar)
2. Capacitor control mode (example): 2
3. CT ratio (example): 20 (current transformation ratio: 100/50)
4. Target power factor: 100(\%)
5. Minimum load: 100(kW)
6. Delay time: 120(s)

- Data setting and change procedure

Note:
${ }^{* 1}$ The initial value setup in mode 1 is always displayed at the first power-on after the unit is delivered from the factory, or displayed if all data have been reset to the factory setup.
${ }^{* 2}$ Although 0 is set at shipping from the factory, check the setup by incrementing the capacitor numbers with this key.

Power Factor Controllers
Automatic power factor regulators
QC06E and QC12E

Data setting flow	Key operation	Display status		Explanation
		Mode	Data	
Enter 0 in the ones place	ENT	5	■回年	＂ 2 ＂is set at the tens place． An entry in the ones place is awaited．
Enter 0 in the ones place 	ENT	5	Пロコロ	CT ratio input has been completed．
Target power factor initial display	\wedge	\square	$\square \square$	Target power factor：＂98＂is set at shipping from the factory．
Target power factor input awaited	ENT	\square	号吕吕	An entry of target power factor is awaited．
	\triangle or \triangle	\square		Target power factor input is in progress．
Enter target power factor＂100＂	ENT	\square	$1 \square \square$	Target power factor input has been completed．
Minimum load initial display	\wedge	L		Minimum load：＂0＂is set at shipping from the factory．
Minimum load input awaited	ENT	L		＂ 0 ＂is set at the thousands place． An entry in the thousand place is awaited．
Enter 0 in the thousands place	ENT	L	푸눈	＂ 0 ＂is set at the thousands place． An entry in the hundreds place is awaited．
Enter 1 in the hundreds place	ヘ	L	1	Enter＂1＂in the hundreds place．
Enter 0 in the tens place	ENT	L	［	＂ 1 ＂is set at the hundreds place． An entry in the tens place is awaited．
Enter 0 in the ones place	ENT	L	\square 1 H	＂ 0 ＂is set at the tens place． An entry in the ones place is awaited．
Enter 0 in the ones place	ENT	L	$1 \square \square$	Minimum load input has been completed．
Delay time initial display	ヘ	\square	Э	Delay time：＂300＂is set at shipping from the factory．
Delay time input awaited	ENT	\square		An entry of delay time is awaited．
Enter delay time 120	\wedge or \checkmark	\square	（1）	Delay time input is in progress．
	ENT	\square	$1 \square \square$	Delay time input has been completed．
Data setting completed	$\frac{\text { AUTO }}{\text { SET }}$	\square Display item	Measured data	Measured data is displayed．

- Supplemental explanations

1. Mode symbols 1 to 9 and o, b, c.

- The capacitor bank is never connected when the capacitance is set to 0 .
- The capacitor bank is never disconnected when the capacitance is set to 9999.
- When multistep control is selected, only the capacitance of mode symbol 1 becomes valid. No data needs to be set for mode symbols 2 to 9 and o, b, c.

2. Capacitor connection and disconnection

Mode symbol	Set value	Description
A	1	Cyclic/optimum control
	2	Uncondentional cyclic control
	3	Multistep control, capacitance ratio 1:2:2:2:2:2:2:2:2:2:2:2
		Multistep control, capacitance ratio 1:2:4:4:4:4:4:4:4:4:4:4
		Multistep control, capacitance ratio 1:2:4:8:8:8:8:8:8:8:8:8

A capacitor discharger recommended for multistep control of A3, A4, or A5 is a discharging coil which reduces the residual voltage of the capacitor to 50 volts or less within five seconds.
3. If " 100% " is set as the target power factor of mode symbol F , a control of leading reactive power is performed.
4. Set the minimum load value to one slightly higher than the actual minimum load of the equipment to ensure an accurate light-load disconnection even when the measuring error or circuit constant fluctuates slightly.

Example: When the actual minimum load of the equipment is 100 kW , set the value to $120 \mathrm{~kW}(100 \times 1.2)$.

Note:

Select a delay time suitable for the capacitor discharger. When using a discharging resistor, set the delay time to 300s (5min) or 600s (10min). An inappropriate delay time may damage capacitors or reduce their service lives.

Calculating CT ratios

- CT ratio

Example: When the primary current is 400A and secondary current is 5 A .
$400 \div 5=80$
CT ratio $=80$

- Determining capacitances and number of capacitor banks to improve the power factor by switching-on capacitors
The capacitances and the number of capacitor banks are determined as follows:
- For capacitors having the same capacitances

When load variation (increase and decrease of load) is frequent.

1. Determining the target power factor

Consider how far the power factor can be improved from the current value by automatic control.

Example

Current power factor (before improvement): 0.8
Target power factor (after improvement): 0.98
Maximum demand power: 1000kW
θ : Favtor: θ
P: Active power
Q: Reactive power
S: Max. demand power
$\operatorname{COS} \theta$: Target power factor
$\operatorname{COS} \theta_{0}$: Improve the power factor

2. Calculating the capacitances needed to improve the power factor
See the capacitor selection chart (Page 09/101) to calculate the necessary capacitance.

Example

To improve the power factor from 0.8 to 0.98 , the factor K_{1} should be 0.54 . Therefore, the necessary capacitance (Cm) is obtained as follows:
$\mathrm{Cm}=$ Maximum demand power $\times \mathrm{K}_{1}=1000 \mathrm{~kW} \times 0.54=540 \mathrm{kvar}$ The necessary capacitance is 540kvar.

3. Calculating the target reactive power

Calculate the target reactive power from the target power factor (after improvement) and the maximum demand power.

Example

The target value is calculated using the factor K_{2} selection table. (Page 09/101)
Target power factor: 0.98
$\mathrm{K}_{2}=0.2$
The target reactive power $\left(Q_{1}\right)$:
$\mathrm{Q}_{1}=$ Maximum demand power $\times \mathrm{K}_{2}$
$=1000 \mathrm{~kW} \times 0.2$
=200kvar

4. Determining the number of capacitor banks

Determine the number of capacitor banks from the necessary capacitance for power factor improvement and target reactive power.

Example

Determine the number of capacitor banks as follows:
$\mathrm{n}=\underline{\text { Necessary capacitance for power factor improvement (Cm) }}$ Target reactive power (Q_{1})
(1) If $n \geq 6$, the number of banks should be six.
(2) If $\mathrm{n}<6$, the number of banks should be n .
(Round up any fraction)
In this example,
$\mathrm{n}=\frac{540 \mathrm{kvar}}{200 \mathrm{kvar}}=2.7<6$
If the fraction is rounded up, the number of necessary banks is 3 .
Note: The necessary capacitance for power factor improvement (Cm) means the total capacitance to be controlled by this unit.

5. Calculating the capacitance per capacitor bank

If each bank should have the same capacitance, the capacitance needed to improve the power factor must be divided by the number of banks calculated at step 4.

Example

Capacitance per capacitor bank:
$\mathrm{Co}=\frac{\text { Capacitance needed to improve the power factor (Cm) }}{\text { Number of capacitor banks (n) }}$
In this example,
$\mathrm{Co}=\frac{\mathrm{Cm}}{\mathrm{n}}=\frac{540 \mathrm{kvar}}{3(\text { banks })}=180 \mathrm{kvar}$
Since there are no 180kvar capacitors, a 200kvar-capacitor can be used.

- For capacitors having unequal-capacitances

When load variation is a slight and stable all the year round.
Target power factor and the necessary capacitance for power factor improvement are calculated using step 1 and 2.

Current power factor (before improvement): 0.8
Target power factor (after inprovement): 0.98
Necessary capacitance for power factor improvement (Cm): 540kvar
For load variation as shown below, calculate the reactive power variation using K_{1}.

Example

- When P_{1} is $150 \mathrm{~kW}, Q_{1}=P_{1} \times K_{1}=150 \times 0.54=81 \mathrm{kvar}$

Capacitor $\mathrm{C}_{1}=100 \mathrm{kvar}$
-When P_{2} is $400 \mathrm{~kW}, \mathrm{Q}_{2}=216 \mathrm{kvar}$
Capacitor $\mathrm{C}_{2}=\mathrm{Q}_{2}-\mathrm{C}_{1}=116 \mathrm{kvar}, \mathrm{C}_{2}=150 \mathrm{kvar}$

- When P_{3} is $600 \mathrm{~kW}, Q_{3}=324 \mathrm{kvar}$

Capacitor $\mathrm{C}_{3}=\mathrm{Q}_{3}-\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)=74 \mathrm{kvar}, \mathrm{C}_{3}=100 \mathrm{kvar}$

- When P_{4} is $1000 \mathrm{~kW}, Q_{4}=540 \mathrm{kvar}$

Capacitor $\mathrm{C}_{4}=\mathrm{Q}_{4}-\left(\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}\right)=190 \mathrm{kvar}, \mathrm{C}_{4}=200 \mathrm{kvar}$

Fuji Electric FA Components \& Systems Co., Ltd./D \& C Catalog Information subject to change without notice

Power Factor Controllers
 Automatic power factor regulators QC06E and QC12E

■ Capacitor selection / Factor \mathbf{K}_{1}

Obtain the value of the capacitor required for improving the power factor by referring to the following list:

■ Factor K_{2} selection

Power factor $(\cos \theta 2)$	0.7	0.75	0.8	0.85	0.875	0.9	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99
$\mathrm{~K}_{2}=\sqrt{\frac{1}{\cos ^{2} \theta_{2}}-1}$	1.02	0.88	0.75	0.62	0.55	0.48	0.45	0.43	0.40	0.36	0.33	0.29	0.25	0.20	0.14

[^8]
Power Monitoring Equipment
 General Information

Power monitoring equipment (F-MPC)
 F-MPC60B, F-MPC30, F-MPC04 series

Description

- FUJI power monitoring equipment (F-MPC) realizes fine power management to contribute to energy-saving.
- We can offer you various F-MPC equipment such as FMPC04 series power monitoring unit that measures electric power of one to multi-circuits, and compact size F-MPC60B, F-MPC30 series multifunctional digital relay that protects, controls, and measures high-voltage distribution facilities.
- As support tool, a power monitoring system software, F-MPC-Net is also available, which collects and analyzes data measured by F-MPC.
- As related products of F-MPC, molded case circuit breaker with ZCT and split type current transformer are introduced.

- Power monitoring equipment used in power distribution system

Multiple function protectors and controllers F-MPC60B, F-MPC30 series

Description

- FUJI multiple function protector and controller (F-MPC) performs energy control to contribute to energy-saving. The F-MPC60B and F-MPC30 are a kind of multifunctional digital relays.
- Although these series are very compact, they integrate multiple functions in a compact body, such as protection, measurement, operation, and monitoring of high-voltage power distribution and switching facilities. They can also transmit data obtained from these functions to upper level controllers.

■ Functions

The functions of F-MPC60B and F-MPC30 series are listed below.

Series		F-MPC60B	F-MPC30
Type		UM43FG-E5AK	UM5ACG-H5R
Installation location		Receiving or feeder	Feeder
Application (phase: line)		3:3, 3:4	3:3, 3:4
VT voltage	Input	2VT/3VT star	-
	Voltage indication	Between phases, between lines	-
Ground fault system	System type	Direct/resistance	Direct/resistance
IO detection	${ }^{1}$ Residual (3XCT)	\bigcirc	\bigcirc
	(2)Tertiary winding (100/5A)	\bigcirc	\bigcirc
	(3)ZCT (5 to 100/5A)	\bigcirc	\bigcirc
	(4)ZCT (5 to 400/5A)	\bigcirc	\bigcirc
	(5)ZCT ($200 / 1.5 \mathrm{~mA}$)	-	-
	```© \({ }^{\text {(2CT }}\) (100/1A) or (70/1A) or secondary I input ( 0.002 to 0.4 A )```	-	-
E0 detection   * Feeder: Depending on MN signal.	EVT (3Ry= 110V)	-	-
	EVT (3Ry= 190V)	-	-
	ZPD-1 (FUJI-made)	-	-
	MN signal output	-	-
	MN signal input	-	-
Protective characteristic (current)	SI, VI, LT, EI, I ${ }^{\text {² }}$	$\bigcirc$	$\bigcirc$ (without $\mathrm{I}^{2} \mathrm{t}$ )
	DT1 (short-time)	$\bigcirc$	$\bigcirc$
	DT2 (definite-time)	$\bigcirc$	$\bigcirc$
Control voltage	Rating	100V DC	100/200V DC
	Allowable range	80 to143V DC	80 to 286V DC
Transducer output selection	No. of output pole	6	-
	(Function and terminal)	Select	-
No. of DI/DO		8:8	1:3
No. of CPU		2	1
External plug		-	$\bigcirc$
CB close/open	CB making slow-down monitoring function	$\bigcirc$	-
	Harmonic voltage (3, 5, 7, Total)	-	-
	Harmonic current (3, 5, 7, Total)	$\bigcirc$	-
	Demand current	$\bigcirc$	-
Display mode	All or part: changeable	$\bigcirc$	- (All only)

[^9]■ Functions (continued)

Series			F-MPC60B	F-MPC30	
Type			UM43FG-E5AK	UM5ACG-H5R	
Installation location			Receiver or feeder	Feeder	
Protection	Overcurrent Instantaneous	50	$\bigcirc$	$\bigcirc$	
	Overcurrent Short-time	51DT1	$\bigcirc$	$\bigcirc$	
	Overcurrent Definite-time	51DT2	$\bigcirc$	$\bigcirc$	
	Overcurrent Inverse-time *1	51	$\bigcirc$	*2	
	Ground-fault Instantaneous	50G	$\bigcirc$	$\bigcirc$	
	Overcurrent Inverse-time *2	51G	$\bigcirc$	$\bigcirc$	
	Ground fault directional	67	-	-	
	Phase-loss	46	$O^{* 3}$	-	
	Inverse-phase	47	O*3	-	
	Voltage established	84	-	-	
	Undervoltage	27	$\bigcirc$	-	
	Overvoltage	59	$\bigcirc$	-	
	Ground-fault overvoltage	64	-	-	
	Current prealarm	OCA	$\bigcirc$	$\bigcirc$	
	Ground-fault current prealarm	OCGA	$\bigcirc$	$\bigcirc$	
Measurement	Current (r, s, t)	A	$\bigcirc$	$\bigcirc$	
	Voltage (line)	V	$\bigcirc$	-	
	Voltage (phase)		$\bigcirc$	-	
	Active power ( $\pm$ )	W	$\bigcirc$	-	
	Reactive power ( $\pm$ )	Var	$\bigcirc$	-	
	Power-factor ( $\pm$ )	PF	$\bigcirc$	-	
	Frequency	Hz	$\bigcirc$	-	
	Active electric energy (+)	WHM	$\bigcirc$	-	
	Active electric energy (-)	WHM	$\bigcirc$	-	
	Reactive electric energy (+)	VarH	$\bigcirc$	-	
	Reactive electric energy (-)	VarH	$\bigcirc$	-	
	Ground fault (zero-phase) voltage	V0	-	-	
	Ground fault (zero-phase) current	A0	$\bigcirc$	$\bigcirc$	
	Harmonic current (3, 5, 7, Total)	HA	$\bigcirc$	-	
	Harmonic voltage (3, 5, 7, Total)	HV	-	-	
	Demand current (r, s, t)	DA	$\bigcirc$	-	
	Demand active power	DW	$\bigcirc$	-	
	Max. zero-phase current value		$\bigcirc$	$\bigcirc$	
	Max. zero-phase voltage value		-	-	
	Max. demand current value (r, s, t)		$\bigcirc$	-	
	Max. demand power		$\bigcirc$	-	
	Total electric energy (+)		$\bigcirc$	-	
	Total electric energy (-)		$\bigcirc$	-	
	Min. voltage value (between lines)		$\bigcirc$	-	
Preventive maintenance	50 (INST) Operation Count		$\bigcirc$	$\bigcirc$	
	51DT1 Operation Count		$\bigcirc$	$\bigcirc$	
	51DT2 Operation Count		$\bigcirc$	$\bigcirc$	
	51 Operation Count		$\bigcirc$	$\bigcirc$	
	67DG Operation Count		-	-	
	50G Operation Count		$\bigcirc$	$\bigcirc$	
	51G Operation Count		$\bigcirc$	$\bigcirc$	
	OCA Operation Count		$\bigcirc$	$\bigcirc$	
	OCGA Operation Count		$\bigcirc$	$\bigcirc$	
	Phase loss Operation Count		- *3	-	
	Inverse phase Operation Count		O*3	-	
	27 Operation Count		$\bigcirc$	-	
	59 Operation Count		$\bigcirc$	-	
${ }^{* 1}$ with $\mathrm{SI}, \mathrm{VI}, \mathrm{LT}, \mathrm{EI}$, and $\mathrm{I}^{2} \mathrm{t}$ characteristics ${ }^{* 3}$ Available for version 1 or later.   *2 with SI, VI, LT, and EI characteristics				Available -	Not available

## Multiple function protectors and controllers F-MPC60B series, UM43FG-E5AK

## Description

Although the F-MPC60B series is very compact, it integrates multiple functions in one body, such as protection, measurement, operation, and monitoring of high-voltage power distribution and switching facilities. It can also transmit the data obtained with these functions to upper level controllers.

## 1 Features

## Flexibility

In accordence with changes in circuit conditions such as CT ratio, the setting of the F-MPC60B can be easily changed.

## Improved maintainability

Preventive maintenance and fault analysis can be easily made with the functions that display operation history and fault data.

## High reliability

To prevent operation errors such as circuit disconnection, the FMPC60B series has dual CPUs that check with each other for confirmation and dual output circuits from which output signals are always checked.


## RS-485 communication interface

Two protocol types are available: MPC-Net protocol and MODBUS protocol.*

Note: * MODBUS protocol is available for version 1 or later.

## $\square$ Specifications

- General specifications

Type		UM43FG-E5AK
Control power supply		100V DC (80 to 143V)/ 100V AC (85 to 132V) common use
Control power consumption		Max. 15W
Power consumption of CT, VT		Max. 1.0VA
Rated current (CT secondary current)		5A AC ( "1A AC" model is also available (non-standard).)
Rated voltage	Line voltage	Select "110V AC" or " $110 \times \sqrt{3} \mathrm{AC}$ " (VT secondary voltage)
	Phase voltage	Select "110V $/ \sqrt{3} \mathrm{AC}$ " or "110V AC" (VT secondary voltage)
Zero-phase current		5A AC
Insulation resistance		$10 \mathrm{M} \Omega$ (min.) between ground and electric circuits connected together
Vibration resistance		$16.7 \mathrm{~Hz} 1.96 \mathrm{~m} / \mathrm{s}^{2}, 0.4 \mathrm{~mm}$ double amplitude, 10 minutes each in $\mathrm{X}, \mathrm{Y}$, and Z directions
Shock resistance		$300 \mathrm{~m} / \mathrm{s}^{2}$, three times each in $\mathrm{X}, \mathrm{Y}$, and Z directions
Withstand voltage		2 kV AC 1 minute between ground and electric circuits connected together, excluding, RS-485 signal, MN signal, and kWh-pulse output signal cables
Noise resistance		JEC2500 (conforming to ANSI), square wave, 1.5 kV , 1ns/1 $\mathrm{s}^{\text {, for }} 10$ minutes.
Overload resistance		CT circuit: at ratting 40times, a second, 2 times VT circuit: at ratting 1.25 times, 10 second
Lightning impulse noise resistance		5.0 kV (between ground and electrical circuits connected together)
Dropout tolerance		20 ms (Operation continues, however, display goes out.)
Electrostatic discharge		Contact discharge: $\pm 8 \mathrm{kV}$ Aerial discharge: $\pm 15 \mathrm{kV}$
Ambient temperature		Operating: -10 to $+60^{\circ} \mathrm{C}$ (operation guaranteed) 0 to $+40^{\circ} \mathrm{C}$ (characteristics guaranteed) (no icing) *1   Storage: -25 to $+70^{\circ} \mathrm{C}$ (no icing)
Humidity		20 to 90\% RH (no condensation)
Atmosphere		No corrosive gas and no heavy dirt and dust.
Grounding		Class D grounding (100 2 or less)
Applicable standard		JEC2500 (Protective relays for electric power systems), JEC-2510 (Overcurrent relays), JEC-2511 (Voltage relays), JIS C4602 (Overcurrent relays for 6.6kV receiving), JIS C1102-1 to -9 (Direct acting analogue electrical instrument and their accessories), IEC255-3 (1989), -5, -6
Mass		$1.4 \mathrm{~kg}$

Power Monitoring Equipment
Multiple function protectors and controllers
F-MPC60B

Specifications

- Input/output specifications

Input circuit		Applicable to both 100 V DC (max. 143V) and 100V AC (max. 132V)   Pick up voltage: 40 to 70 V DC/40 to 70 V AC
Output circuit	Circuit breaker ON/OFF/trip	Making current: $15 \mathrm{~A}(110 \mathrm{~V}$ DC), allowable continuous current: 4A
	Other than above	Making/breaking current: $0.2 \mathrm{~A}(110 \mathrm{~V}$ DC, inductive load L/R $=15 \mathrm{~ms}$ or less), allowable   continuous current: 1 A

- Measurement and display specifications

	Effective measuring and display range	Accuracy *2
Current/Demand current/ Max. demand current	0, $0.8 \%$ to CT rating to 8 - CT rating *1	$\pm 1.5 \%$ (0, 0.8 to 100\%), $\pm 5 \%$ (100 to 800\%)
Zero-phase current/Max. zero-phase current	CT: 0, $2 \%$ to CT rating to 8 - CT rating	$\pm 1.5 \%$ : $0,2 \%$ to CT rating, $\pm 5 \%$ : others
Active power   Demmand active power/ Reactive power	$\pm 0.004$ to $\pm 1 \mathrm{~kW}$ at VT secondary circuit (The value is converted into the VT rated voltage	$\pm 1.5 \%: 0, \pm 0.004 \text { to } \pm 1 \mathrm{~kW}$   See the figure below.
Power factor	Lead 0\%-100\% - Lag 0\%	$\pm 5 \%$ (Lagging: no sign, leading: - sign) See the figure below.
Active electric energy *3 Reactive electric energy	0 to 99999, multiplying factor: 1, 10, 100,1000	Equivalent to ordinary instruments shown in Table 4 specified in JIS C 1216 (instrument with a transformer)
Line voltage	9.5 to 260 V on VT secondary side	$\pm 1.5 \%$
Phase voltage	5.5 to 150 V on VT secondary side	$\pm 1.5 \%$
Frequency	45 to $55 \mathrm{~Hz}(50 \mathrm{~Hz}), 55$ to $65 \mathrm{~Hz}(60 \mathrm{~Hz})$	$\pm 0.5 \%$
Max. demand value	Same as the above range	-
Harmonics current	3rd, 5th, 7th, overall harmonics	-

*1 The fault current up to $2000 \%$ (accuracy: $\pm 5 \%$ ) can be displayed.
*2 " 0 , a to n\%" means that " 0 " is indicated if a value is less than a\%.
${ }^{* 3}$ There are two indications in the electric energy indication; total electric energy indication (zero clear disable) and periodic electric energy indication (zero clear is enable).

## The sign " $\pm$ " in electric measuring

The sign " $\pm$ " is used to display "LEAD/LAG" in power-factor. measuring and "electric power selling/purchase" in electric power measuring. No signs are used if a value is " + ". The sign " $\pm$ " has the following meanings depending on the measured items.


- Active power: kW
+ : Power purchase (Consumed electric power)
-: Electric power selling (Inverse electric power flow)
- Reactive power: kvar
+ : Lagging current by reactive volt-ampere meter method
-: Leading current by reactive volt-ampere meter method
* "LEAD/LAG" reverses with electric power selling/purchase.
- Power factor: COS $\phi$
+:LAG -: LEAD


# Power Monitoring Equipment Multiple function protectors and controllers F-MPC60B 

## ■ Specifications

- History data

Item	Display range	Display code
50 (INST) operation count	0 to 9999	H 0
51DT1 operation count	0 to 9999	H 1
51 (OC) operation count	0 to 9999	H 2
51G operation count	0 to 9999	H 3
50G operation count	0 to 9999	H 4
59 (OV) operation count	0 to 9999	H 6
27 (UV) operation count	0 to 9999	H 7

* Other history display: Fault value display (on occurrence of a fault), history maximum values of zero-phase current/voltage, maximum demand value (A, W), and minimum instantaneous voltage

Item	Display range	Display code
46 operation count	0 to 9999	H 9
47 operation count	0 to 9999	HA
OCA operation count	0 to $9999.100(\mathrm{H})$	Hb
Running time	0 to $9999 \cdot 100$	
ON/OFF operation	0 to $9999 \cdot 10$ (times)	Hd
OCGA operation count	0 to 9999	Hn
51DT2 operation count	0 to 9999	HP

* The display codes are the codes to be displayed on this F-MPC60B (UM43FGE5AK).


## - Specifications of protective relays

Item	Setting range of current/ voltage operate value	Setting range of operate time (timer)	Characteristics	
			Operate value	Operate time
50 (Instantaneous)	1 to 20 times of CT rated current (in 0.2 times step), Lock	Fixed	$\pm 5 \%$	40 ms or less
51DT1 (Definite time)	1 to 20 times of CT rated current (in 0.2 times step), Lock	0 to 5s (in 0.05 step)	$\pm 5 \%$	Less than $1 \mathrm{~s} \pm 50 \mathrm{~ms}$ More than 1s $\pm 5 \%$
51DT2 (Definte time)	20 to $240 \%$ of CT rated current (2\% step), Lock	0 to 10s (0.1s step)	$\pm 5 \%$	Less than $1 \mathrm{~s} \pm 50 \mathrm{~ms}$ More than $1 \mathrm{~s} \pm 5 \%$
51 (Inverse time)   SI, EI, VI, LT, I²t	20 to $240 \%$ of CT rated current (2\% step), Lock	Time multiplication: 0.5 to 20 times, (in 0.1 times step) (Minimum operation time: 150 ms )	$\pm 5 \%$	$\begin{aligned} \text { Setting }= & 300 \%: \pm 12 \% \\ & 500,1000 \%: \pm 7 \% \\ & \text { (lower limit } \pm 100 \mathrm{~ms} \text { ) } \end{aligned}$
50G, 50N (Instantaneous/definite time)	0.2 to 8 times of CT rated current (in 0.1 times step), Lock	0.0 to 10s to 180s *1	$\pm 5 \%$	$\pm 5 \%$ (lower limit $\pm 50 \mathrm{~ms}$ )
$\begin{aligned} & \text { 51G, } 51 \mathrm{~N} \\ & \mathrm{SI}, \mathrm{El}, \mathrm{VI}, \mathrm{LT} \end{aligned}$	0.02 to 1.00 times of CT rated current (in 0.01 times step), Lock	Time multiplication: 0.5 to 20 times (in 0.1 times step) (Minimum operation time: 150 ms ) *1	$\begin{aligned} & \pm 5 \% \\ & (\mathrm{~min} . \pm 100 \mathrm{~mA}) \end{aligned}$	$\begin{aligned} \text { Setting }= & 300 \%: \pm 12 \% \\ & 500,1000 \%: \pm 7 \% \\ & \text { (lower limit } \pm 100 \mathrm{~ms} \text { ) } \end{aligned}$
59 V (0V)	VT secondary voltage: 60 to 150 V (1V step), lock	0.0 to 5.0 s to 60 s   (in 0.5s step) (in 1 s step)	$\pm 5 \%$	$\pm 5 \%$ (min. $\pm 50 \mathrm{~ms}$ )
27 V (UV)	VT secondary voltage: 10 to 100 V (1V step), lock	0.0 to 5.0 s to 60 s (in 0.5s step) (in 1s step)	$\pm 5 \%$	$\pm 5 \%$ (min. $\pm 35 \mathrm{~ms}$ )
46 (Open-phase)	-	-	Unbalanced rate 50-80\%	2s (fined)
47 (Phase sequence relay)	-	-	-	0.5s on less
OCA (Overcurrent pre-alarm)	10 to $100 \%$ of CT rated current (in $5 \%$ step), Lock	10 to 200s (in 10s step)	$\pm 10 \%$	$\pm 5 \%$
OCGA   (Leakage current pre-alarm)	$50,60,70,80 \%$ of the setting value of "51G operating current", Lock	10 to 200s (in 10s step)	$\begin{aligned} & \pm 10 \% \\ & (\min \pm 200 \mathrm{~mA}) \end{aligned}$	$\pm 5 \%$

*1 When a current exceeds $15 \%$ of the rated fundamental wave current, the malfunction preventive function against the exciting inrush current activates. (When the contents of the second higher harmonics are about $15 \%$ or higher, the feature will lock outputs.) Note that with the 50 G relay, the malfunction preventive function against the exciting inrush current will not activate if you set the operate time at 0 s .

- Communications specifications

Protocol	MODBUS protocol mode	MPC-Net mode
Standard	EIA-485	EIA-485
Data exchange method	polling/selecting system	1: N polling/selecting system
Transmission distance	1000m (total length)	1000m (total length)
No. of connectable units	Up to 32 units (including master unit)	Up to 32 units (including master unit)
Station number address	01 to 99	01 to 99
Transmission speed	4800/9600/19200 bps (selectable)	4800/9600/19200 bps (selectable)
Data format	Number of start bits: 1 (fixed)   Data length: 8 bits (fixed)   Parity bit: None/even/odd (selectable)   Stop bits: 1 bit or 2 bit (automatic selection)    1 bit: for "even or odd" parity    2 bit: for "none" parity	Number of start bits: 1 (fixed)   Data length: $7 / 8$ bits (selectable)   Parity bit: None/even/odd (selectable)   Stop bits: 1 (fixed)   BCC= Even horizontal parity

Power Monitoring Equipment
Multiple function protectors and controllers
F-MPC60B

## ■ Specifications

- Specifications of transducer outputs

Transducer output signal	4 to $20 \mathrm{~mA} \mathrm{DC} \mathrm{(external} \mathrm{load} \mathrm{resistance:} 270 \Omega$ or less)		
Signal type	Current (la, Ib, Ic)	4 to 20 mA for 0 to CT rated current	Accuracy $\pm 1.5 \%$
	Line voltage (Vab, Vbc, Vca)	For VT secondary 0 to150V, 4 to $20 \mathrm{~mA} * 1$	

Note: • Output signals are connected to a common terminal (minus side).

- An upper or lower limiter operates when the output signal is about to exceed the upper or lower limit.

The upper limit is fixed at 20 mA , and the lower limit is fixed at 20 mA .
${ }^{* 1}$ : Applied line voltage: $100 \mathrm{~V} / 110 \mathrm{~V} / 120 \mathrm{~V}$ AC.
*2: Applied line voltage: $100 \mathrm{~V} / 110 \mathrm{~V} / 120 \mathrm{~V}$ AC $\times \sqrt{ } 3$, $A C$.

- Specifications of kWh pulse output

Type of output	Transistor, open collector
Ratings	Max. 150 V DC, 100 mA
Pulse width	$200 \pm 20 \mathrm{~ms}$
Pulse rate	$10^{n} \mathrm{kWh}$ per pulse ( $\mathrm{n}=-2$ to 4) (integer), or 2000 pulses per kWh

## ■ Type number nomenclature



# Power Monitoring Equipment <br> Multiple function protectors and controllers F-MPC60B 

## Example of etxternal wiring diagrams



Note: *1 Use selective input 1 to 8 and selective output 1 to 8 by selecting the function type by setup.
*2 Outputs of "ON, OFF, TRIP and equipment error" are used exclusively. Inputs of "52a: the answer back signal of CB ON" and "the monitoring of TC coil" are used exclusively.
${ }^{* 3}$ Equipment error output is a normally closed contact (normally excited, and if an error occurs, excitation terminates and contact opens). Therefore, a time delay of about 100 ms occurs before the contact opens, since the power has been on (in operation). Consider the use of a timer, if necessary, if you create an external sequence.
*4 If this unit, being provided with RS-485 communication function, is located at the termination of a communication line, connect terminals No. 3 and 5 . With this, the $100 \Omega$ terminating resistor is connected across the RS- 485 bus.
${ }^{* 5}$ Use twisted wires (cables) as the output cable of transducer.

- If you have to connect a heavy load exceeding relay's contact rating, be sure to use it in combination with FUJI's miniature power relay HH6 $\square$. See page 09/106 "Input/output specifications."

Power Monitoring Equipment
Multiple function protectors and controllers F-MPC60B

## $\square$ Time-current characteristic

Standard inverse (SI) characteristics


Note
Time setting (lever) is of 0.1 times step (Lower limit: 0.5 , upper limit: 20.0). Indication of a part of the lever is omitted in the characteristics indicated above.

$$
t=\frac{0.14}{1^{0.2}-1} \cdot \frac{L}{10}(L: \text { time magnification })
$$



Note:
Time setting (lever) is of 0.1 times step (Lower limit: 0.5 , upper limit: 20.0). Indication of a part of the lever is omitted in the characteristics indicated above.

$$
\mathrm{t}=\frac{80}{\mathrm{~L}^{2}-1} \cdot \frac{\mathrm{~L}}{10}(\mathrm{~L}: \text { time magnification })
$$



Note:
Time setting (lever) is of 0.1 times step (Lower limit: 0.5 , upper limit: 20.0). Indication of a part of the lever is omitted in the characteristics indicated above.

$$
\mathrm{t}=\frac{13.5}{\mathrm{I}-1} \cdot \frac{\mathrm{~L}}{10}(\mathrm{~L}: \text { time magnification })
$$

I2t characteristics


Note:
Note:
Time setting (lever) is of 0.1 times step (Lower limit: 0.5 , upper limit: 20.0). Indication of a part of the lever is omitted in the characteristics indicated above.

$$
\mathrm{t}=\frac{720}{\mathrm{~L}^{2}} \cdot \frac{\mathrm{~L}}{10}(\mathrm{~L}: \text { time magnification })
$$



Note:
Time setting (lever) is of 0.1 times step (Lower limit: 0.5 , upper limit: 20.0). Indication of a part of the lever is omitted in the characteristics indicated above.

$$
\mathrm{t}=\frac{120}{\mathrm{I}-1} \cdot \frac{\mathrm{~L}}{10} \text { (L: time magnification) }
$$

# Power Monitoring Equipment <br> Multiple function protectors and controllers <br> F-MPC60B 

## Dimensions, mm



Minimum clearance from adjacent upper and lower devices or panel plate: 100 mm

- Characteristics of overcurrent relay (OCR)

The characteristics of overcurrent relays (OCR) are, in general, divided into the protective INST (50) (setting code 10, 11), the protective DT1 (setting code 12 to 14), protective DT2 (setting code 1c, 1d, 1E) and the protective OC 51 (setting code 15 to18). The characteristics of protective OC 51 consist of 5 kinds
of inverse characteristic curves, such as standard inverse (SI) characteristics, very inverse (VI) characteristics, long time inverse (LT) characteristics, extremely inverse (EI) characteristics and $\mathrm{I}^{2 t}$ characteristics). Combination of the protective INST (50), protective DT1, protective DT2 and OC 51 carries out coordinative protection.

Outline of characteristic of overcurrent relay

Item	Operating current	Operating time
Protective INST (50)	1 to 20 times of CT rated current 5A (0.2 times step)	Fixed (40ms or less)
		0 to $5 \mathrm{~s} \mathrm{(0.05s} \mathrm{step)}$
Protective DT1	20 to $240 \%$ of CT rated current 5A	0 to $10 \mathrm{~s}(0.1 \mathrm{~s}$ step)
Protective DT2	Select from 5 characteristic curves.   Time magnification: 0.5 to 20 times (0.1 times step)	
Protective OC (51)		

*1: The operating time of protective OC51 is saturated at about 150 ms .
The operating time will be saturated at 20 times of CT rated current when the setting exceeds $200 \%$.
For example, the operating time becomes $833 \%(=2000 \% /(240 \% \cdot 100))$ of the CT rated current in $240 \%$ setting.


# Power Monitoring Equipment <br> Multiple function protectors and controllers <br> F-MPC30 

## Multiple function protectors and controllers F-MPC30 series, UM5ACG-H5R

## - Description

The F-MPC30 series is a multiple function protectors and controllers in the power monitoring equipment, which integrates protective, measurement, and transfer functions for power feeder facilities. Versatile functions such as preventive maintenance and history data and abnormal value recording can be achieved with excellent economy and reliability. These works have been very complicated as you must have used individual power monitoring devices in combination.

## Features

## Economical system configuration

 Includes measurement and protective functions limited to the current ranges most frequently used, thus allowing the construction of economical systems.
## Improved operating reliability

Includes an automatic monitor function, an automatic diagnostic function supported by continuous monitoring and automatic inspection, and a fail-safe function, thus ensuring high operating reliability while minimizing daily and regular inspection tasks.


## Easily designed coordination protection

Provided with 51DT1 and 51DT2 definite time trip characteristics that simplify the designing of coordination protection between overcurrent relays.

## RS-485 communications interface

Two protocol types are available:
MPC-Net protocol and MODBUS protocol.

Specifications

- General specifications

Type	UM5ACG-H5R
Control power supply	100/200V DC (80 to 286V DC) 100V AC (85 to 132V) common use
Control power consumption	Max. 15W (100/200V DC), Max 25 VA (100V AC)
Power consumption of CT, VT	Max. 1.0VA
Rated current (CT secondary current)	5A AC ("1A model" is also available (non-standard))
Zero-phase current	5A AC
Insulation resistance	$10 \mathrm{M} \Omega$ min. between ground and electric circuits connected together
Vibration resistance	$16.7 \mathrm{~Hz}, 0.4 \mathrm{~mm}$ double amplitude, $1.96 \mathrm{~m} / \mathrm{s}^{2}, 10$ minutes each in $X, Y$, and $Z$ directions
Shock resistance	$300 \mathrm{~m} / \mathrm{s}^{2}$, three times each in $X, Y$, and $Z$ directions
Withstand voltage	2 kV AC 1 minute between ground and electric circuits connected together, excluding RS-485 signal lines
Noise resistance	JEC 2500 (conforming to ANSI), square wave, 1.5 kV , 1ns/1 $\propto$, for 10 minutes
Overload resistance	CT circuit: at rating 40 times, a second, 2 times
Lightning impulse noise resistance	4.5 kV (between ground and electrical circuits connected together)
Dropout tolerance	20 ms (Operation continues, however, display goes out.)
Electrostatic discharge	Contact discharge: $\pm 8 \mathrm{kV}$, Aerial discharge: $\pm 15 \mathrm{kV}$
Ambient temperature	-10 to $+60^{\circ} \mathrm{C}$ (operation guaranteed), 0 to $+40^{\circ} \mathrm{C}$ (characteristic guaranteed) (no icing) *1
Storage temperature	-25 to $+70^{\circ} \mathrm{C}$ (no icing)
Humidity	20 to 90\%RH (no condensation)
Atmosphere	No corrosive gas and no heavy dirt and dust.
Grounding	Class D grounding (100 2 or less)
Applicable standard	JEC2500 (Protective relays for electric power systems), JEC-2510 (Overcurrent relays), JIS C4602 (Overcurrent relays for 6.6kV receiving), JIS C1102-1 to -9 (Direct acting analogue electrical instrument and their accessories), IEC255-3 (1989) -5, -6.
Mass	1.4 kg

[^10]
# Power Monitoring Equipment Multiple function protectors and controllers 

- Input/output specifications

Input circuit		100/200V DC (286V DC or less) common use Pick-up voltage: 40 to 70V DC (Input current; 1.2 mA at 100 V DC, 2.4 mA at 200 V DC)
Output circuit	Circuit trip	The closing current: 15A (110V DC), 10A (220V DC), the allowable continuous conduction current: 4A
	Other than above	The switching current: 0.2 A (110V DC, inductive load $L / R=15 \mathrm{~ms}$ or less) The allowable continuous conduction current: 1A
		The making current: 0.1 A (220V DC, inductive load $\mathrm{L} / \mathrm{R}=15 \mathrm{~ms}$ or less) The allowable continuous conduction current: 1A

- Measurement and display specifications

	Effective measuring and display range	Accuracy *2
Current	$0,0.8 \%$ to CT rating to 8 CT rating *1	$\pm 1.5 \%(0,0.8$ to $100 \%), \pm 5 \%(100$ to $800 \%)$
Zero-phase current	CT: 0, 2\% to CT rating to 8. CT rating	$\pm 1.5 \%(0,2 \%$ to CT rating), $\pm 5 \%$ (more than CT   rating)

*1 The fault current up to $2000 \%$ (accuracy: $\pm 5 \%$ ) can be displayed.
*2 "0, a to $n \%$ " means that " 0 " is indicated if a value is less than $\mathrm{a} \%$.

## - History data and display ranges

Item	Display range	Display code
50 (INST) operation count	0 to 9999	H 0
51DT1 operation count	0 to 9999	H 1
51 (OC) operation count	0 to 9999	H 2
51G operation count	0 to 9999	H 3
50G operation count	0 to 9999	H 4

* Other history display: Fault value display (on occurrence of a fault), history maximum values of zero-phase current/voltage, maximum demand value (A, W), and minimum instantaneous voltage

Item	Display range	Display code
OCA operation count	0 to 9999	Hb
Running time	0 to $9999 \cdot 100(\mathrm{~h})$	Hc
Close operation count	0 to $9999 \cdot 10$ (times)	Hd
OCGA operation count	0 to 9999	Hn
51DT2 operation count	0 to 9999	HP

* The display codes are the codes to be displayed on this F-MPC30 (UM5ACGH5R).


## - Specifications of protective relays

	Setting range of current/voltage operatel value	Setting range of operate time (timer)	Characteristics (accuracy)	
			Operate value	Operate time
50 (Instantaneous)	1 to 20 times of CT rated current (in 0.2 times step), Lock	Fixed	$\pm 5 \%$	40 ms or less
51DT1 (Definite-time)	1 to 20 times of CT rated current (in 0.2 times step), Lock	0 to 5s (in 0.05s step)	$\pm 5 \%$	Less than $1 \mathrm{~s} \pm 50 \mathrm{~ms}$ More than $1 \mathrm{~s} \pm 5 \%$
51DT2 (Definite-time)	20 to $240 \%$ of CT rated current (in 2\% step), Lock	0 to 10s (in 0.1s step)	$\pm 5 \%$	Less than $1 \mathrm{~s} \pm 50 \mathrm{~ms}$ More than $1 \mathrm{~s} \pm 5 \%$
51 (Inverse time)   SI, EI, VI, LT	20 to $240 \%$ of CT rated current (in 2\% step), Lock	Time multiplication:   0.5 to 20 times (in 0.1 times step)   (Min. operation time: 150ms)	$\pm 5 \%$	Setting value $300 \%$ : $\pm 12 \%$ $500,1000 \%$ : $\pm 7 \%$ (lower limit $\pm 100 \mathrm{~ms}$ )
50G, 50N (Instant/definite time)	0.1 to 8 times of CT rated current (in 0.1 times step), Lock	0.0 to 10s to 180 s   (in 0.1 s step.) (in 1s step.) *1 *2	$\pm 5 \%$	$\pm 5 \%$ (lower limit $\pm 50 \mathrm{~ms}$ )
$\begin{aligned} & 51 \mathrm{G}, 51 \mathrm{~N} \\ & \mathrm{SI}, \mathrm{EI}, \mathrm{VI}, \mathrm{LT} \end{aligned}$	0.02 to 1.00 times of CT rated current (in 0.01 times step), Lock	Time multiplication:   0.5 to 20 times (in 0.1 times step)   (Min. operation time: 150ms)*1	$\begin{aligned} & \pm 5 \% \\ & (\mathrm{~min} . \pm 100 \mathrm{~mA}) \end{aligned}$	Setting value $300 \%$ : $\pm 12 \%$ 500, 1000\%: $\pm 7 \%$ (lower limit $\pm 100 \mathrm{~ms}$ )
OCA   (Overcurrent pre-alarm)	10 to $100 \%$ of CT rated current (in $5 \%$ step), Lock	10 to 200s (in 10s step)	$\begin{aligned} & \pm 10 \% \\ & (\min . \pm 100 \mathrm{~mA}) \end{aligned}$	$\pm 5 \%$
OCGA   (Leakage current pre-alarm)	$50,60,70,80 \%$ of the setting value of "51G operating current", Lock	10 to 200s (in 10s step)	$\begin{aligned} & \pm 10 \% \\ & (\min . \pm 200 \mathrm{~mA}) \end{aligned}$	$\pm 5 \%$

Notes: *1 When a current exceeds $15 \%$ of the rated fundamental wave current, the malfunction preventive function against the exciting inrush current activates. (When the contents of the second higher harmonics are about $15 \%$ or higher, the feature will lock outputs.) Note that with the 50 G relay, the malfunction preventive function against the exciting inrush current will not activate if you set the operate time at 0s.

Power Monitoring Equipment
Multiple function protectors and controllers
F-MPC30

- Communications specifications

Protocol	MODBUS protocol mode	MPC-Net mode
Standard	EIA-485	EIA-485
Data exchange method	Polling/selecting system	1: N polling/selecting system
Transmission distance	1000m (total length)	1000m (total length)
No. of connectable units	Up to 32 units (including master unit)	Up to 32 units (including master unit)
Station number address	01 to 99	01 to 99
Transmission speed	4800/9600/19200 bps (selectable)	4800/9600/19200 bps (selectable)
Data format	Number of start bits: 1 (fixed)   Data length: 8 bits (fixed)   Parity bit: None/even/odd (selectable)   Stop bits: 1 bit or 2 bit (automatic selection)    1 bit: for "even or odd" parity    2 bit: for "none" parity	Number of start bits: 1 (fixed)   Data length: $7 / 8$ bits (selectable)   Parity bit: None/even/odd (selectable)   Stop bits: 1 (fixed)   BCC: Even horizontal parity

## Type number nomenclature



## Example of external wiring diagram (External 3 CTs )

3-phase, 4-wire system / zero-phase current


Note: • Use selective input 1 and selective output 1 to 3 by selecting the function type by setup. See page 09/113 for details.

- Outputs of "TRIP and device error" are used exclusively. Inputs of "52a: the answer back signal of CB ON" and "the monitoring of TC coil" are used exclusively.
- Device error output is a normally closed contact (normally excited, and if an error occurs, excitation terminates and contact opens). Therefore, a time delay of about 100 ms occurs before the contact opens, since the power has been on (in operation). Consider the use of a timer, if necessary, if you create an external sequence.
- If you have to connect a heavy load exceeding relay's contact rating, be sure to use it in combination with FUJl's miniature power relay HH6 $\square$.

See page 09/113 "Input/output specifications."

- If this unit, being provided with RS-485 communication function, is located at the termination of a communication line, connect terminals No. 3 and 5 . With this, the $100 \Omega$ terminating resistor is connected across the RS-485 bus.


## Power Monitoring Equipment

Multiple function protectors and controllers
F-MPC30

## - Time-current characteristics of an overcurrent relay

Stnadard inverse (SI) characteristics


Note:
Time setting (lever) is of 0.1 times step (Lower limit: 0.5, upper limit: 20.0). Indication of a part of the lever is omitted in the characteristics indicated above.

$$
t=\frac{0.14}{\rho^{0.02}-1} \cdot \frac{L}{10}(L: \text { Time magnification })
$$

Long time inverse (LT) characteristics


Note:
Time setting (lever) is of 0.1 times step (Lower limit: 0.5, upper limit: 20.0). Indication of a part of the lever is omitted in the characteristics indicated above

$$
t=\frac{120}{I-1} \cdot \frac{L}{10}(L: \text { Time maginification })
$$

Very inverse (VI) characteristics


Note:
Time setting (lever) is of 0.1 times step (Lower limit: 0.5 , upper limit: 20.0). Indication of a part of the lever is omitted in the characteristics indicated above.

$$
t=\frac{13.5}{I-1} \cdot \frac{L}{10}(L: \text { Time magnification })
$$

Extremely inverse (EI) characteristics


Note:
Time setting (lever) is of 0.1 times step (Lower limit: 0.5 , upper limit: 20.0). Indication of a part of the lever is omitted in the characteristics indicated above.

$$
t=\frac{80}{L^{2}-1} \cdot \frac{L}{10}(L: \text { Time maginification })
$$

Fuji Electric FA Components \& Systems Co., Ltd./D \& C Catalog Information subject to change without notice

Dimensions, mm


Minimum clearance from adjacent upper and lower devices or panel plate: 100 mm

## ■ Characteristics of overcurrent relay (OCR)

The characteristics of overcurrent relays (OCR) are, in general, divided into the protective INST (50) (setting code 10, 11), the protective DT1 (setting code 12 to 14), protective DT2 (setting code 1c, 1d, 1E) and the protective OC 51 (setting code 15 to18). The characteristics of protective OC 51 consist of 4 kinds of inverse characteristic curves, such as standard inverse (SI)
characteristics, very inverse (VI) characteristics, long time inverse (LT) characteristics, extremely inverse (EI) characteristics. Combination of the protective INST (50), protective DT1, protective DT2 and OC 51 carries out coordinative protection.

Outline of characteristic of overcurrent relay.

Item	Operating current	Operating time
Protective INST (50)	1 to 20 times of CT rated current 5A (0.2 times step)	Fixed (40ms or less)
Protective DT1		0 to 5 s (0.05s step)
Protective DT2	$\begin{aligned} & 20 \text { to } 240 \% \text { of CT rated current 5A } \\ & \text { (2\% step) *1 } \end{aligned}$	0 to 10 s (0.1s step)
Protective OC (51)		Select from 4 characteristic curves.   Time magnification: 0.5 to 20 times ( 0.1 times step)

[^11]

# Power Monitoring Equipment <br> Power monitoring unit <br> F-MPC04, F-MPC04P, F-MPC04S 

## Power monitoring unit F-MPC04 series

## Description

- F-MPC04 series power monitoring equipment, designed for used in low voltage circuits, can perform electric power management and monitoring from high to low voltage circuit efficiently and economically, used together with F-MPC60B and F-MPC30 series.
- F-MPC04 series consists of 3 types: type UM04 integrated power monitoring unit that can monitors up to 10 feeders, type UM02 multi-circuit power monitoring unit that is space-saving and can monitor up to 8 feeders in three-phase three-wire system, and type UM03 single circuit power monitoring unit, being compact, that has optimum output functions for preventive maintenance, and is best suited for installation in a unit of facility, section, and floor.
- RS-485 communications interface is standard. With our application software of F-MPC-Net power monitoring system, you can automatically display, print, and save the data measured by F-MPC 04 on your PC.


[^12]■ System configuration example
Low voltage


## Power Monitoring Equipment <br> Power monitoring unit <br> F-MPC04

## Integrated power monitoring unit, UM04

## Description

Integrating complete functions required for power distribution and power line data management in a single unit (up to 10 circuits for 3-phase 3-wire system)

- Supports multiple power distribution lines UM04 allows economical management of each facility and installation by means of communications interface.
- Easy mounting to existing switchboards

Split-through type CTs enables UM04 s easy mounting to existing boards.

- Flexible energy management

UM04 manages power line data such as measurement, preventive maintenance, maintenance and electricity quality, and transmit those data to upper level controller, thus promises energy and labor-saving.

- Harmonics current measurement

The third, fifth, seventh, and total harmonic current can be measured.

- Monitor insulation deterioration and implement preventive maintenance by measuring leakage current.
Provides deterioration trend analysis with trend data and preventive maintenance with 2-stage output (leakage current pre-alarm and leakage current relays).
- Compatible with MODBUS RTU protocol. Select between the MODBUSRTU protocol or the F-MPC-Net protocol for the F-MPC series.


UM04-ARA4


CT-BOX

- Handles digital input.

Four inputs (ON/OFF status and pulse count digital signals) from the relay connector terminal block.

- Related Equipment

Molded case circuit breakers with ZCT and split type current transformers are also introduced as related products, RS16 Terminal Relay which outputs leakage current prealarm and the connector terminal-block which outputs kWh pulse, are also explained (UM04 use only).

Type number nomenclature
Integrated power monitoring unit

## UM04-ARA4



Types

Description	Specification	Type	Remarks
Integrated power monitoring unit	RS-485, 2VT-conformed	UM04-ARA4	
CT-BOX	For CT secondary current 5A	UM04X-5	
	For CT secondary current 1A	UM04X-1	
Related product	15 output	RS16-DE04H	See page 09/137.
Terminal Relay	Length 1m/2m/3m	AUX014-20 $\square$	See page 09/137.
Connector cable	kWh pulse output   For digital input	AU-CW21B1-04	See page 09/138.
Connector terminal block			

## ■ Applicable CT

Current transformer (CT)	CT secondary current	Applicable CT-BOX	Applicable integrated power monitoring unit
Split CT Type CC2C76- $\square \square \square 1$   Type CC2D74- $\square \square \square 1$	1A	UM04X-1	UM04-ARA4
General-purpose CT XX/1A	1A		
General-purpose CT XX/5A	5 A	UM04X-5	


Applicable circuit	CT-BOX	
	One unit	Two units
Three-phase/3-wire	feeders max.	10 feeders max.
Single-phase/2-wire		
Single-phase/3-wire		6 feeders max.
Three-phase/4-wire	3 feeders max.	

* The number of countable feeders depends on the number of CT boxes.


## ■ Specifications

## - General specifications

Item		Specification
Rating	Rated frequency	50 or 60 Hz (Selectable by the setting)
	Rated voltage	Applicable to both 110 V and 220V AC, 110V AC for use with a VT secondary circuit
	Rated current	Depends on CT-BOX specifications (5A, 1A in a CT secondary circuit, power consumption: 0.1VA max., excluding power loss in the external cable resistance)
	Zero-phase CT	EW type or MCCB with a ZCT (zero-phase current transformer ) type (FUJI model)
Control power supply		85 to 264V AC (By exclusive control power supply terminal)
Inrush current		40A max., 3ms max. (AC) 85A max., 3ms max. (DC)
Control power consumption *1		25VA max. (Power monitoring unit + two CT-BOXes + Terminal Relays with all contacts ON)
Rated input	Voltage input (VT ratio)	100 V direct input,200V direct input   VT primary/secondary : AC220/110V, AC440/110V, AC440/220V, AC240/110V, AC400/110V, AC3.3k/110V, AC6.6k/110V
	Current input (CT ratio)	Primary rating setting : 10A, 15A, 20A, 25A, 30A, 40A, $50 \mathrm{~A}, 60 \mathrm{~A}, 75 \mathrm{~A}, 80 \mathrm{~A}, 100 \mathrm{~A}, 120 \mathrm{~A}, 150 \mathrm{~A}, 160 \mathrm{~A}, 200 \mathrm{~A}, 250 \mathrm{~A}, 300 \mathrm{~A}, 320 \mathrm{~A}, 400 \mathrm{~A}, 500 \mathrm{~A}, 600 \mathrm{~A}$ $630 \mathrm{~A}, 750 \mathrm{~A}, 800 \mathrm{~A}, 100 \mathrm{~A}, 1200 \mathrm{~A}, 1250 \mathrm{~A}, 1500 \mathrm{~A}, 1600 \mathrm{~A}, 2000 \mathrm{~A}, 2500 \mathrm{~A}, 3000 \mathrm{~A}, 3150 \mathrm{~A}, 3200 \mathrm{~A}, 4000 \mathrm{~A}, 5000 \mathrm{~A}, 6000 \mathrm{~A}, 7500 \mathrm{~A}$
Ambient temperature		-10 to $+55^{\circ} \mathrm{C}$ (no icing or no condensation)
Storage temperature		-20 to $+70^{\circ} \mathrm{C}$ (no icing or no condensation)
Humidity		20 to 90\% RH (no condensation)
Atmosphere		No corrosive gas and no heavy dirt and dust
Alarm and shutdown outputs		Continuous output current: 1A max. (with output of terminal relay, RS16-DE04H) Make and break current: 250V AC 5A, 30V DC 5A max.
Insulation resistance		$10 \mathrm{M} \Omega$ min.: between ground and electric circuits connected together $5 \mathrm{M} \Omega$ min.: between electric circuits, between contacts
Dielectric strength		2000 V AC, 1 minute between ground and electric circuits connected together, excluding T-link and RS-485 signal circuits
Impulse		$4.5 \mathrm{kV}(1.2 \cdot 50 \propto \mathrm{~s})$ between ground and electric circuits connected together, excluding T-link and RS-485 signal circuits
Momentary overload capability		20 times rated current, nine times for 0.5 s , once for 2 s
Shock resistance		Approx. $300 \mathrm{~m} / \mathrm{s}^{2}$, three times in each of $\mathrm{X}, \mathrm{Y}$, and Z axes
Noise immunity		1 to 1.5 MHz damped oscillation noise having 2.5 to 3 kV peak voltage for 2 s 1.5 kV square wave (rise time: 1 ns , pulse width: $1 \propto \mathrm{~s}$ ) for 10 minutes continuously
Vibration resistance		JIS C $60068-2-6 \quad 10-58 \mathrm{~Hz}$ : single amplitude $0.075 \mathrm{~mm} .58-150 \mathrm{~Hz}=$ constant accelation $10 \mathrm{~m} / \mathrm{s}^{2} \mathrm{X}, \mathrm{Y}, \mathrm{Z}$ directions 8minutes X10 cycles
Electrostatic noise resistance		Mounting steel panel surface: $\pm 8 \mathrm{kV}$   F-MPC04 (UM04) front panel surface: $\pm 15 \mathrm{kV}$
Permissible momentary power failure		20 ms , continuous operation (excluding display)
Mass		Power monitoring unit UM01: 1000g, CT-BOX: 300g Terminal relay: 200 g

Note *1 The control power consumption on the table applies to where CT-BOXes and Terminal relays are connected to the power monitoring unit UM04.

# Power Monitoring Equipment Power monitoring unit F-MPC04 

## - Measurement and display specifications

Measurement type	Effective measuring range	The main body display	Communication data	Accuracy (\%)	Remarks
Current: $I(r), I(s), I(t)$	$0,0.5 \%$ to $150 \%$ of CT secondary rated current	4 digits	4 digits	$\pm 2.5 \%$ FS	" 0.00 " is displayed, if the measured value is about $1.0 \%$ or less.
Voltage: *3 V(uv), V(vw), V(wu)	VT secondary voltage:   3Ø3W : max 264V   3Ø4W (Phase voltage):   max.264V   3Ø4W (Line voltage): $\sqrt{3 \times 264 V}$			$\pm 2.5 \%$ FS	VT secondary voltade is jointly used as internal control power supply. (For U-V)
Zero-phase current lo	0, 50 to 3600 mA			$\pm 20 \%$ FS	" 0 " is displayed, if the measured value is about 50 mA or less.
Active power *4*5	0 to 3.5 kW (220V) as converted to current transformer secondary value	4 digits with the code	4 digits with the code	$\pm 2.5 \%$ FS	Two-wattmeter method: Measured when the value is $0.4 \%$ or higher of the rated current. (lr, It, Vuv, Vvw)
Reactive power *4*5	0 to 3.5 kvar (220V) as converted to current transformer secondary value			$\pm 2.5 \%$ FS	Two-wattmeter method
Power factor *4	Lead : 0\%-100\%-Lag : 0\%	3 digits with the code	4 digits with the code	$\pm 5 \%$   The " $90^{\circ}$ " phase angle conversion	
Active electric power	0 to 99999 (kWh) The effective power quantity of the plus 0 to 99999 (kWh) The effective power quantity of the minus	5 digits	*6	Equivalent to ordinary class specified in JIS	$\pm 2.0 \%$ (Power factor of 1 between $5 \%$ and $120 \%$ of CT primary rated current) $\pm 2.5 \%$ (Power factor of 0.5 between $10 \%$ and $120 \%$ of CT primary rated current)
The reactive energy	0 to 9999 (kvar)   The reactive energy of the plus 0 to 9999 (kvar)   The reactive energy of the minus	none	*6	$\begin{array}{\|l\|} \hline \pm 0.5 \% \\ \text { (No display) } \end{array}$	
The voltage minimum value	"264V from 85V" in VT secondary of each phase	4 digits		$\pm 2.5 \%$ FS	
The voltage maximum value	"264V from 85V" in VT secondary of maximun-phase			$\pm 2.5 \%$ FS	
Harmonic current	3rd \& 5th order : 0, 2.5\% to 150\% 7th order : 0, $5.0 \%$ to $150 \%$			$\begin{aligned} & \pm 2.5 \% \\ & \text { (7th order: } \pm 5 \% \text { ) } \end{aligned}$	*7

Note : *1. The measurement accuracy includes the error in the CT boxes and ZCT. The error in the combined VTs and CTs are not included.
*2. Current, voltage, and power performance characteristics are according to JIS C 1102 (indicating electrical measuring instruments). The measurement display value is the average value over approximately 1 second.
*3. The values in the table are the line voltages for 3-phase, 3 -wire systems and the phase voltages for 3 -phase, 4 -wire systems. For 3 -phase, 4 -wire applications, the setting in this table can be used to display either the phase voltages or line voltages.
*4. Selling/purchasing for power measurement and lead/lag for power factor measurements are displayed with one sign (blank for positive). The meaning of positive/negative for each measurement item is given below.
*5. The maximum values of the active power and reactive power are $\pm 3.5 \mathrm{~kW}$ at a 5 A secondary current for 3 -phase, 3 -wire systems, $\pm 0.69 \mathrm{~kW}$ at 1 A for 3 -phase, 3 -wire systems, $\pm 6.0 \mathrm{~kW}$ at a 5 A secondary current for 3 -phase, 4 -wire systems, and $\pm 1.2 \mathrm{~kW}$ at a 1 A secondary current for 3 -phase, 4 -wire systems.
*6. For the F-MPC-Net protocol, the lower four digits of the display are sent. For the MODBUS RTU protocol, 0 to 999999.999 kWh is sent and the step value for the total countup depends on the VT ratio and CT ratio.
*7. For 3-phase, 3-wire systems, the harmonic currents for phases R and T are measured. For 3-phase, 4-wire systems, the harmonic currents for phases R, S, and $T$ are measured.

## The sign " $\pm$ " in electric measuring

The sign " $\pm$ " is used to display "LEAD/LAG" in power-factor, measuring and "electric power selling/ purchase" in electric power measuring. No signs are used if a value is " + ". The sign " $\pm$ " has the following meanings depending on the measured items.

- Active power: kW
+ : Power purchase (Consumed electric power)
-: Electric power selling (Inverse electric power flow)
- Reactive power: kvar
+: Lagging current by reactive volt-ampere meter method
-: Leading current by reactive volt-ampere meter method
* "LEAD/LAG" reverses with electric power selling/purchase.
- Power factor: COS $\phi$
+:LEAD -: LAG



# Power Monitoring Equipment <br> Power monitoring unit 

## - Demand measurement

Item	Specification
Current $\mathrm{I}(\mathrm{r}), \mathrm{I}(\mathrm{s}), \mathrm{I}(\mathrm{t})$ )	Time: Select one from 0,1 to 15 minutes (1 minute increments) and 30 minutes it at the initial setting
(common to all 10 circuits).	
Effective power	
Harmonics currents, voltage	Display item: 1. Demand values   2. Maximum demands (maximum values recorded before the last reset operation)

## - Specifications of a leakage current relay

## Sensitive current

Setting value	$200 / 500 / 1000 / 2000 / 3000 \mathrm{~mA}$ or Lock   (lo or lob selectable)
Operating Level	50 to $100 \%$ of setting value   (Operate at less than $50 \%$, no opearate at $100 \%$ )

Operation time characteristics

Setting time	Inertia non-operating time	Operating time
0.1 s	-	100 ms max.
0.3 s	150 ms min.	0.3 s max.
0.5 s	250 ms min.	0.5 s max.
1.0 s	500 ms min.	1.0 s max.
3.0 s	$1,500 \mathrm{~ms}$ min.	3.0 s max.

Note: - Sensitive current and operation time can be set by an arbitrary combination.

- The values on the table is for a trip relay's specifications. The pre-alarm relay operates at half the operating level on the table, and its operation time is 10 s fixed. The pre-alarm relay can be used as an alarm against leakage current increase in case of cable insulation deterioration or flood.
- Data display at fault occurrence

Pre-alarm of load current, pre-alarm of leakage current relay (auto-reset), maximum current indication at circuit interruption (indication reset by resetting)

- kWh-pulse-output specifications (for products with a kWh-pulse-output feature)
Transistor open collector output: 35V DC, 50mA max., (residual voltage at ON state: 2.5 V max.)
Output pulse width: $200 \mathrm{~ms} \pm 20 \mathrm{~ms}$
Output period: $1,000 \mathrm{~ms}$ min.
Output pulse rate: $10^{\mathrm{n}} \mathrm{kWh} /$ pulse, $\mathrm{n}=-2,-1,0,1,2$, or 3 (selected from VT and CT ratio.)


## - ZCT with Leakage Current Relay

The UM04 can be used together with a MCCB with ZCT or a zero-phase current transformer.

## Communications specifications

Item		Specifications	
		F-MPC-Net protocol *	MODBUS RTU protocol *
Standard		EIA-485	
Transmission method		Half duplex, 2-wire	
Data exchange method		1:N (UM04) polling/selecting	
Transmission distance		1,000m (total length)	
Number of stations		31 max. per system (excluding master)	
Transmission speed		4,800/9,600/19,200bps (selectable)	
Address setting		1 to 99	
RS-485 terminal names		DXA, DXB	Connect DXA as D1(+) and DXB as D0(-).
Transmitted characters		ASCII	Binary
Data format	Start bits	1 bit (fixed)	1 bit (fixed)
	Data length	7 or 8 bits (selectable)	8 bit (fixed)
	Parity bit	None, even, or odd (selectable)	None, even, or odd (selectable)
	Stop bits	1 bit (fixed)	No parity: 2 bits (fixed) Others: 1 bit (fixed)
	BCC	Even vertical parity	CRC-16

*The F-MPC-Net or MODBUS RTU protocol can be set for communications for the UM04.

## - Digital input specifications

Item	Specification	Remarks
Number of inputs	4	Communications transmissions and UM04 display of
Exterior input signals	No-voltage contact input or   transistor open-collector input	ON/OFF status and pulse count.
Input specifications	24 V DC, approx. 5 mA flow   OFF level: 1 mA max.	
Minimum input signal width	50 ms	

Power Monitoring Equipment
Power monitoring unit

## F-MPC04

## ■ System configuration

With an integrated power monitoring unit UM04, you can easily construct a low-voltage power distribution system equipped with leakage current measuring, leakage current pre-alarm, and earth leakage circuit shutdown.


## ■ Dimensions, mm

- Integrated power monitoring unit, UM04


*Allow approx. 100 mm space for the connector cable.
$\underline{\text { Panel cutout }}$


Terminal connection diagram


- CT-BOX, UM04X


Fuji Electric FA Components \& Systems Co., Ltd./D \& C Catalog

## Multi-circuit power monitoring unit, UM02

## Description

Integrating measuring functions required for power monitoring in one unit

- A single unit measures multiple circuits

A single UM02 can measure up to 8 feeders in 3-phase 3-wire,
12 feeders in single-phase 2 -wires and up to 4 feeders in 3-
phase 4 -wire circuit.

- Easy installation into existing switchboards Compact UM02 can be easily installed into on-site power distribution or lighting panel, irrespective of new panel or existing panel, to create power monitoring system economically.
- On-site measuring instrument

UM02 can be used an on-site measuring instrument by combining with an optional display and setting unit UM02X-S.

- Communication interface

As UM02 has an RS-485 communications interface as standard, it can communicate with other power monitoring equipment with RS-485

## Type number nomenclature

Multi-circuit power monitoring unit (Measuring unit)

- Type and applicable circuit

Description	Applicable circuit	Type
Measuring unit	Single-phase 2-wire, up to 12 feeders	UM02-AR2
	3-phase 3-wire, Single-phase 3-wire, Single-phase   2-wire,up to 8 feeders	UM02-AR3
	3-phase 4-wire, up to 4 feeders	UM02-AR4
Sold separately	The TP48X socket and connecting cable are provided as accessories.	UM02X-S
	0.5 m	UM02X-C005
	5 m	UM02X-C050

## - Specifications F-MPC04P (UM02)

- General specifications

Item		Specification
Ratings	Voltage	Direct input: 100 or $200 \mathrm{~V} \mathrm{AC}, 400 \mathrm{~V}$ AC (AR4 only)   VT primary/ secondary: 220, 440V AC, 3.3k, 6.6kV AC/110V AC, 440/220V AC *1
	Current	Split CT: 5, 50, 200, 400A AC   Small split current sensor CT: 5A AC (primary rated set range 10 to 7500A) *1
Control power supply		100/200V AC common use ( 85 to 264V AC)   AR2: between terminals P1-N, AR3: between terminals U-V, AR4: between terminals P1-P2
Inrush current		15A max., 3ms max. (100V AC 50Hz)   30A max., 3ms max. (200V AC 50Hz)
Control power consumption		20VA or less (or approx. 15VA at 200V AC, 10VA at 100V AC)
Ambient temperature		Operating: -10 to $55^{\circ} \mathrm{C}$ (no icing or no condensation) Storage: -20 to $70^{\circ} \mathrm{C}$ (no icing or no condensation)
Humidity		20 to 90\% RH (no condensation)
Atmosphere		Free from corrosive gases and excessive dusts or particles
Insulation resistance		$10 \mathrm{M} \Omega \mathrm{min}$. between electric circuits and ground
Dielectric strength		2000V AC, 1 minute (2500V AC, 1 minute for AR4) between control power circuits and ground
Lightning impulse noise resistance		$4.5 \mathrm{kV}(1.2 \cdot 50 \propto \mathrm{~s})$ between control power circuits and ground (6.0kV for AR4)
Momentary overload capability		20 times rated current, 9 times for 0.5s.
Vibration resistance		JIS C 60068-2-6 10 to 58 Hz : single amplitude of 0.075 mm , 58 to 150 Hz , constant acceleration of $10 \mathrm{~m} / \mathrm{s}^{2} 8$ minutes $\times 10$ cycles in each of $X, Y$, and $Z$ directions
Shock resistance		JIS C 60068-2-27 Half sine wave 300m/s ${ }^{2}$, for $11 \mathrm{~ms} \times 3$ times in each of $X, Y$, and $Z$ directions
Noise immunity		1.5 kV square wave (rise time: 1 ns , pulse width: $1 \propto \mathrm{~s}$ ) for 10 minutes continuously
Permissible momentary power failure		20 ms (continuous operation) except RS-485 communications
Mass		Measuring unit: Approx. 500g, Display and setting unit: Approx. 200g

Note *1 Make VT and CT ratio settings through the display and seting unit UM02X-S or from the host controller.

## - Measurement specifications

Item	Effective measurement range		Display	Accuracy *1
Current (N-phase current measured in AR4)	With split CT (200A and 400A AC) combined $0,0.4 \%$ of $\operatorname{In}$ to 500A With small split current sensor (50A AC) combined $0,0.4 \%$ of In to 50A with small split current sensor (5A) combined *4 0 to n times CT rating		4 digits	$\pm 1.5 \%$
Active power				$\pm 2.5 \%$ for S-phase current of AR3 and N-phase current of AR4
Reactive power *2				
Power-factor			$\square . \square \square$	$\pm 5 \%$ (converted into a phase angle of $90^{\circ}$ )
Active electric energy *2			5 digits	Equivalent to JIS ordinary class *4
Max. active power *3	Same as above.   (with a demand time set to $0,1,5,10,15$, or 30 min .)		4 digits	$\pm 1.5 \%$
Min. voltage each phase *2	AR2, R3 85 to 264V (directly or VT secondary voltage conversion) The minimum and maximum voltage are average values for 0.3 s .	AR4   Phase voltage 50 to 288V (directly or VT secondary voltage conversion) Line voltage 86 to 498 V The minimum and maximum voltage are average values for 0.3s.	4 digits	$\pm 1.5 \%$
Max. voltage *2				$\pm 1.5 \%$

Notes *1 Measurement accuracy does not include CT and current sensor.
*2 In measurement mode display is the number of digits of RS-485 communications data. The display and setting unit does not display communications data on reactive power, minimum voltage, and maximum voltage values.
*3 Max active power and active electric energy values can be reset by the display and setting unit and host controller. And, when VT ratio or CT ratio is changed, these are autamalically reset.
*4 With 1 -turn or 3 -turn primary winding selected for the 5 A small split current sensor, the lower limit of minute current measurement is selected as specified below.

Classfication	Measurement and display range	Measurement lower limit	Accuracy	
		(Electric energy starting current)	Current and power	Electric energy
1 turn	0, 2\% to rating • 10	2\% of rating	0 to rating: $\pm 1.5 \%$ of rating	$\pm 2.5 \%$   (5\% to 100\% of rating, load
3 turns	0, $0.7 \%$ to rating - 3	0.7\% of rating	Exceeding rating: $\pm 1.5 \%$ (FS)	power factor -0.8 to 1.0 to $+0.8)$

Note: * Sampling interval/measurement display value (communication) of current and power, and sampling and integration intervals of electric energy are shown below. In the case of an intermittent load, such as a welding machine, accurate measurement may be disturbed and therefore the use of the single-circuit F-MPC04S (refer to page 118) is recommended.

Fuji Electric FA Components \& Systems Co., Ltd./D \& C Catalog

## - Sampling interval and display value

Type	Sampling interval/display value of current and power (Communication)	Sampling and cumlative interval of power
UM02-AR2	Approx. 0.2s / Average voltage for aprox. 1.5 s	Approx. 0.2 s
UM02-AR3	Approx. $0.2 \mathrm{~s} /$ Average voltage for aprox. 1.5 s	Approx. 0.2 s
UM02-AR4	Approx. $0.1 \mathrm{~s} /$ Average voltage for aprox. 0.4 s	Approx. 0.1 s

- Display and setting unit UMO2X-S, specifications

Item	Specification	Remarks
Control power supply	Supplied from the measuring unit UM02-AR	
Measuring unit UM02-AR communications   specifications	EIA-485 (always 19200bps fixed)	
Number of connectable measuring unit   UM02-AR	5 max.	UM02-AR2, AR3, AR4
Max. cable length between UM02-AR and   UM02X-S	$23 m$	Total length between UM02X-S   and all UM02-ARs
Display item	Operating status, measurement value   VT, CT setting value, fault	Selective indication by a switch
Setting	Voltage, current (CT), demand time, pulse   multiplication rate, No. of turns of CT secondary   winding, host controller communications mode   (different communications interface)	UM02-AR incorporates a different RS-485   interface to communicate with a host controller.

Note: The display and setting unit UM02X-S provides a function to start initial communications to recognize the UM02-AR automatically when UM02X-S is turned on. If on-site indication is not necessary once the setting to the measuring unit UM02-AR is complete, UM02-AR fully operates even without UM02X-S.

## - Communications specifications

Item	Specification
Standard	EIA-485
Transmission system	2-wire half duplex
Data exchange	$1:$ N (F-MPC04P, UM02-AR) polling/selecting
Transmission distance	1000 m (total length)
No. of connectable units	Max.32 (including master)
Station number setting	01 to 99 (set with digital switch)
Transmission characters	
Transmission speed	ASCII
Data format	Number of start bits
	Data length
	Parity bit
	1 (fixed)
	7 or 8 bits (selectable)

[^13]Power Monitoring Equipment
Power monitoring unit F-MPC04P

Dimensions, mm

- Measuring unit UM02-AR

- Display and setting unit UM02X-S



## ■ System configuration



Note: * The display and setting unit UM02X-S is a local area communications master and can monitor and be able to set maximum five measuring units, UM02-ARs
** Station address setting of measuring unit UM02-AR
Use a digital switch on the measuring unit to set a different station address (communication address to host controller).
In local area communication of the display and setting unit UM02X-S, the UM02X-S will automatically read out the address of the measuring units connected with cables for unit connection, and communicate with hem.

## Single circuit power monitoring unit, UM03

## Description

Integrating measuring functions required for power monitoring in one unit

- Output functions for preventive maintenance selectable
- Power alarm/current prealarm
- kWh pulse output
- Leakage current alarm, leakage current prealarm output (model with leakage current measuring function) only
- Capable of measuring inrush current of welders
- High-speed sampling and calculation of voltage and current
- Compact design allows installation almost anywhere.
- Space-saving construction simplifies installation.
- Suited for monitoring individual equipment, section, and floor


## - Networking capability

- RS-485 interface.
- Can be connected to power distribution system same way as the power monitoring equipment F-MPC 60B, 30, 04 (UM04, UMO2) series products


## - Type numbers

Single circuit power monitoring unit	Type	
Leakage current measuring   function	Not provided	UM03-ARA3
	Provided	UM03-ARA3G

Note : As CTs, use type numbers CC2D81-0057, CC2D81-0506, CC2D65-2008, CC2D54-4009, CC2B65-2008, and CC2B54-4009. Refer to page 134. General-purpose CTs (secondary rated current 5A or 1A) cannot be connected directly. Use the general-purpose CT (5A) together with type number CC2D81-0057. Use dedicated ZCT as combination ZCT with the UM03-ARA3.


- System configuration



## - Specifications

- General specifications

Applicable circuit		Single circuit 3-phase 3-wire: 2-CT, single-phase 3-wire: 2-CT, single-phase 2-wire: 1-CT
Control power supply		100 to 200 V AC (85 to 264 V AC) $50 / 60 \mathrm{~Hz}$ ( 45 to 66 Hz )
Inrush current		$15 \mathrm{~A}, 3 \mathrm{~ms}$ or less (at $110 \mathrm{~V} \mathrm{AC}, 50 \mathrm{~Hz}$ ) $30 \mathrm{~A}, 3 \mathrm{~ms}$ or less (at $220 \mathrm{~V} \mathrm{AC}, 50 \mathrm{~Hz}$ )
Control power consumption		Approx. 7VA (at 220V AC) Approx. 5VA (at 110V AC)
VT consumed burden		Approx. 0.2VA
Continuous overload capability	Current input circuit	110\% of maximum setting value (150\% of rated current), 2 hours
	Voltage input circuit	291V AC (1.1. 264 V AC), 2 hours
Short-time overload capability	Current input circuit	2000\% of max. setting value (150\% of rated current), 9 times for 0.5s
	Voltage input circuit	$200 \%$ of max. setting value (264V AC), 9 times for 0.5 s
Vibration		10 to 58 Hz 0.075 mm (one-way amplitude)   58 to 150 Hz : constant acceleration $10 \mathrm{~m} / \mathrm{s}^{2}, 10$ cycles for 8 min in each $X, Y$, and $Z$ directions
Shock		$300 \mathrm{~m} / \mathrm{s}^{2}$, in each $\mathrm{X}, \mathrm{Y}$, and Z directions, 2 times
Withstand voltage / Insulation resistance (500V DC megger)		$2 \mathrm{kV} / 10 \mathrm{M} \Omega$ Between power supply terminals connected together and other terminals connected together $2 \mathrm{kV} / 10 \mathrm{M} \Omega$ Between measurement input terminals connected together and other terminals connected together $2 \mathrm{kV} / 10 \mathrm{M} \Omega$ Between alarm output terminals connected together and other terminals connected together $500 \mathrm{~V} / 10 \mathrm{M} \Omega$ Between watthour pulse output terminals connected together and other terminals connected together
Ambient temperature		-10 to $+55^{\circ} \mathrm{C}$
Storage temperature		-20 to $+70^{\circ} \mathrm{C}$
Humidity		20 to 90\%RH (no condensation)
Atmosphere		Free from corrosive gases and excessive of dusts
Grounding		Type D ground (100 $\Omega$ or less)
Allowable momentary power failure time		20 ms (operation will continue)
Altitude		2,000m or less
Mass		Approx. 400g (main unit only, CT excluded)

# Power Monitoring Equipment <br> Power monitoring unit <br> F-MPC04S (UM03) 

## - Measurement specifications

Item	Effective measurement range	Display	Accuracy *1
Current (R/S/T), demand current Max. demand current value	- With CT (200A AC)   $0,0.4 \%$ of $\ln (0.8 A)$ to 300 A   - With CT (400A AC)   $0,0.4 \%$ of $\ln (1.6 \mathrm{~A})$ to 600 A   - With CT (5A)   $0,0.4 \%$ of $\ln (0.2 A)$ to 50 A   0 , to 1.5 times CT rating (for 5 A )   (converted into CT secondary: 7.5A)   (Max. display range: up to 9,999A)   - Demand time setting: 0, 1 to 15 min   (by 1 min step)   30min setting: Available	4-digit	$\pm 1.5 \%$ : R- and T-phase $\pm 2.5 \%$ : S-phase
Demand value and max. demand value of total harmonic current *2		4-digit	$\pm 2.5 \%$
Active power ( $\pm$ )   Demand power   Max. active demand power value		4-digit	$\pm 1.5 \%$
Reactive power ( $\pm$ )		4-digit	$\pm 3 \%$
Power factor ( $\pm$ )		3-digit	$\pm 5 \%$ (Converted into a phase angle of $90^{\circ}$ )
Active electric energy (+only)		5-digit	Equivalent to JIS ordinary class (pf: 0.5-1.0--0.5)
Reactive electric energy ( $\pm$ absolute value addition)		5-digit	$\pm 5 \%$
Voltage	Converted into an input voltage 60 to 264 V AC	4-digit	$\begin{aligned} & \pm 1.5 \% \\ & \pm 2.5 \%: \text { Vv-w } \\ & \hline \end{aligned}$
Frequency *3	45 to 66 Hz *2	3-digit	$\pm 0.5 \%$
Leakage current (lo/lob) *4 Max. demand value	0, 10 to 1000 mA	4-digit	$\pm 2.5 \%$

Note: *1 The measurement accuracy is a value for FS (full span).
${ }^{* 2}$ The total harmonic current relates only to phase R and phase T . Only the demand value and max demand value are displayed. The current value is not displayed.
${ }^{* 3}$ If the frequency is out of the measurement range (lower than 45 Hz or higher than 66 Hz ), $0.0[\mathrm{~Hz}]$ is displayed.
${ }^{* 4}$ Maesurement of leakage current is possible only with UM03-ARA3G.

- Output specifications

Item	UM03-ARA3	UM03-ARA3G	Specification	
Watt-hour pulse output	Provided	Provided	Transistor open collector output 35V DC 100mA	
Alarm output	Current prealarm (OCA), power alarm *	Provided	Provided	Replay output 250V AC 1A
	Leakage current prealarm (OCGA)   (lo operation)	Not Provided	Provided	
	Leakage current alarm (OCG)	Not Provided	Provided	

Note: * Choose the current prealarm (OCA) output or power alarm by change of setting.

Watthour pulse output details

Output specifications	35 V DC 100 mA (residual 2.5 V or less at ON)
Output pulse width	$100 \mathrm{~ms} \pm 20 \mathrm{~ms}$
Output interval	200 ms or more
Pulse multiplication rate	$10^{n} \mathrm{kWh} /$ pulse $(\mathrm{n}=-3$ to 2 setup)

## Alarm output details

	Setting range		Accuracy	
	Operate value	Time	Operate value	Time
Current prealarm (OCA) *1	I: 20 to 120\% of rated value, Lock (5\% step)	Depending on the demand time setting	$\pm 5 \%$ (rated min $\pm 1.5 \%$ )	$\pm 10 \%$
Power alarm *1	0 to 9999kW   (1kW step)			
Leakage current alarm (OCG) (lo operation)	Operate current 100, 200, 500mA,   Lock	0.1, 0.3, 0.5, 1.0s	$75 \% \pm 5 \%$ of setting value	$75 \% \pm 5 \%$ of setting value ( $\mathrm{min} \pm 25 \mathrm{~ms}$ )
Leakage current prealarm (OCGA)	$\begin{array}{\|l\|} \hline 50 \pm 5 \mathrm{~mA} \\ 100 \text { to } 500 \mathrm{~mA} \\ (50 \mathrm{~mA} \text { step), Lock } \\ \hline \end{array}$	$\begin{aligned} & 0.1,0.3,0.5,1.0 \\ & 10 \text { s or demand time *2 } \end{aligned}$	$\pm 5 \%$	$\pm 5 \%$

[^14]Communications specifications

Item	Specification	Factory setting
Standard	EIA-485	-
Transmission system	2-wire half duplex	-
Data exchange	$1:$ N polling/selecting	-
Transmission distance	1000 m (total length)	-
No. of connectable units	max.32 (including master)	-
Station number setting	1 to 99	Without station number setup
Transmission characters	ASCII	-
Transmission speed	4800,9600, or 19200 bps (selectable)	19200 bps
Data format	Number of start bits	1 (fixed)
	Data length	7 or 8 bits (selectable)
	Parity bit	None, even,or odd (selectable)
	Number of stop bits	1 (fixed)

## Front panel



## - Terminal layout



Note: Alarm output terminal (2) (3) and ZCT input terminal (1) (2) of the UM03-ARA3 (without leakage current measuring function) are NC terminals. Do not connect anything to these terminals.

## Dimensions, mm



Mass: Approx. 400g


Panel cutting


## Power Monitoring Equipment

MCCB with ZCT and zero-phase CT

## Molded case circuit breakers with ZCT

## Description

A leakage current monitoring and breaking system can be easily constructed by combining one of the following models with a UM04 integrated power monitoring unit or a UM03-ARA3G single-circuit power monitoring unit with leakage current measurement.


## ■ Specifications, MCCB with ZCT for line protection

Frame (AF)				125		250		400		630	800
Type				BW125JAZ	BW125RAZ	BW250JAZ	BW250RAZ	BW400JAZ	BW400RAZ	BW630RAZ	BW800RAZ
Number of poles and number of elements				3P3E		3P3E		3P3E		3P3E	3P3E
Rated insulation voltage Ui [V] AC				690		690		690		690	690
Rated impulse withstand voltage Uimp [kV]				6		6		6		6	6
Rated current In [A]   Reference ambient temperature: $40^{\circ} \mathrm{C}$				15,20,30,40,50,60,75,100,125		125,150,160,175,200,225,250		250,300,350,400		500,600,630	700,800
Rated frequency [Hz]				50-60							
Rated breaking capacity[kA] JISC8201-2-1 Ann2[lcu]		AC 4	0/380V	30	50	30	50	36	50	50	50
		AC 2		50	100	50	100	85	100	100	100
Isolation complaint				Compliant							
Reverse connection				Possible							
Utilization category				Cat.A							
Dimensions [mm]			a b c d	$\begin{aligned} & 115 \\ & 155 \\ & 68 \\ & 95 \end{aligned}$		$\begin{aligned} & \hline 130 \\ & 165 \\ & 68 \\ & 95 \end{aligned}$		$\begin{array}{\|l\|} \hline 178 \\ 257 \\ 103 \\ 146 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 248 \\ 275 \\ 103 \\ 146 \\ \hline \end{array}$	$\begin{aligned} & 248 \\ & 275 \\ & 103 \\ & 146 \end{aligned}$
Mass				1.5		2		6.2		9.5	10
Connection method	Front			(screw terminals)		(screw terminals)		(flat terminals)		(flat terminals)	(flat terminals)
Standard	Auxiliary s	witch	W	$\bigcirc$		$\bigcirc$		$\bigcirc$		$\bigcirc$	$\bigcirc$
Internal	Alarm swit		K	$\bigcirc$		$\bigcirc$		$\bigcirc$		$\bigcirc$	$\bigcirc$
accessories *1	Trip device		F	* 3		*3		*3		* 3	* 3
	Test termi		T1, T2	$\bigcirc$		$\bigcirc$		$\bigcirc$		$\bigcirc$	$\bigcirc$
	ZCT outpu		Z1, Z2	$\bigcirc$		$\bigcirc$		$\bigcirc$		$\bigcirc$	$\bigcirc$
Certified standards	Certified standards			Specified Electrical Appliance and Material *2		Not applicable.					
	JISC8201-2-1			Self declaration							
	IEC60947-2			-							
	EN60947-2 (CE marking)			-							
Overcurrent tripping method				Thermal-magnetic							
Trip button				Provided							

: Available
*1 The auxiliary switch, alarm switch, and tripping device are provided as accessories. Only models with terminal blocks are available. Lead wires are not provided.
*2 Not applicable for a rated current of 125A.
*3 Specify 100 to 120 V AC/100 to 110 V DC or 200 to 240 V AC/200 to 220 V DC for the voltage rating.

* 4 The voltage rating is 100 to $240 \mathrm{~V} \mathrm{AC/100} \mathrm{to} 220 \mathrm{~V}$ DC for all models.


## ■ Internal wiring


*S1, S2 : Shunt trip coil input terminal
*Z1, Z2 : ZCT output terminal
${ }^{*}$ T1, T2 : ZCT trip test current input terminal

■ EW series zero-phase current transformers (low-voltage circuit use)

Description	Type	Rated current (A)	Sensor hole diameter (mm)	Hole-through cable			$\begin{aligned} & \hline \text { Mass } \\ & \text { (kg) } \\ & \hline \end{aligned}$
				1中2W	1 $\dagger 3 \mathrm{~W}, 3$ 3 3 W	$3 \phi 4 \mathrm{~W}$	
Round hole through-type	EW-ZB-30M05	50	30	IV 14mm ${ }^{2}$	IV 8mm ${ }^{\text {2 }}$	IV 8mm ${ }^{\text {2 }}$	0.22
	EW-ZB-30M1	100	30	IV 60mm ${ }^{2}$	IV 50mm ${ }^{2}$	IV 38mm ${ }^{2}$	0.32
	EW-ZB-58M2	200	58	IV $125 \mathrm{~mm}^{2}$	IV 100mm ${ }^{\text {2 }}$	IV 80mm ${ }^{2}$	0.6
	EW-Z70A4	400	70	IV $400 \mathrm{~mm}^{2}$	IV $325 \mathrm{~mm}^{2}$	IV $250 \mathrm{~mm}^{2}$	1.1
	EW-Z70A6	600	70	IV $400 \mathrm{~mm}^{2}$	IV $325 \mathrm{~mm}^{2}$	IV $250 \mathrm{~mm}^{2}$	1.1
	EW-Z90	800	90	IV $500 \mathrm{~mm}^{2}$	IV 500mm ${ }^{\text {2 }}$	IV 500mm ${ }^{\text {2 }}$	3.1
	EW-Z115	1200	115	-	-	-	4.8
	EW-Z160	2000	160	-	-	-	10
	EW-Z250	3000	250	-	-	-	28.5
Split through-type	EW-ZD30	100	30	IV 60mm ${ }^{\text {2 }}$	V $50 \mathrm{~mm}^{2}$	IV 38mm ${ }^{\text {2 }}$	0.55
	EW-ZD45	200	45	IV $125 \mathrm{~mm}^{2}$	$\mathrm{V} 100 \mathrm{~mm}^{2}$	IV 80mm ${ }^{2}$	0.89
	EW-ZD65	400	65	IV 325mm ${ }^{\text {2 }}$	V $250 \mathrm{~mm}^{2}$	IV 200mm ${ }^{\text {2 }}$	1.15
Description	Type	Rated current (A)	Sensor hole diameter (mm)	Hole-through conductor			Mass   (kg)
				3 3 3 W	$3 \phi 4$		
With conductors, 3 -pole	EW-Z3B40	400	70	5. 40 mm	-		2.8
	EW-Z3B50	500	70	6.40 mm	-		3.1
	EW-Z3B60	600	90	6.50 mm	-		7.6
	EW-Z3B80	800	90	8.50 mm	-		8.8
	EW-Z3B100	1000	90	12.50 mm	-		11.5
	EW-Z3B120	1200	115	10.75 mm	-		15.2
	EW-Z3B160	1600	160	12. 100 mm	-		30.5
	EW-Z3B200	2000	160	6. $100 \mathrm{~mm} \cdot 2$	-		30.5
	EW-Z3B300	3000	250	8. $150 \mathrm{~mm} \cdot 2$	-		68.6
With conductors, 4-pole	EW-Z4B40	400	90	-	5. 40		6.4
	EW-Z4B50	500	90	-	6.40		6.9
	EW-Z4B60	600	90	-	6.50		11.5
	EW-Z4B80	800	90	-	8.50		14.1
	EW-Z4B100	1000	115	-	12.		15.5
	EW-Z4B120	1200	115	-	10.		24.9
	EW-Z4B160	1600	160	-	12.		36.4
	EW-Z4B200	2000	160	-	6. 10	m 2	36.4
	EW-Z4B300	3000	250	-	8. 15	m 2	80.3

Note: Twist the ZCT secondary wires (normally once every 50 mm ) and separate the wires from power line.

## Power Monitoring Equipment Current transformers CC2

## Current transformers, CC2

## - Description

Designed for even easier handling. Line-up consists of two types; models exclusively used for FUJI power monitoring unit (F-MPC 04 series), and models for general-purpose instrumentation.

- Improved design enables easier mounting.
- Large $\mathrm{K} \rightarrow \mathrm{L}$ display allows easier identification of primary conductor direction.
- Hook attached makes it easier to secure the primary conductor with a cable-tie.
- Clamping diode built in CT will not burn out even with the secondary circuit open (except for the CC2D81).


## ■ Specifications

- CTs are dedicated CTs. Genaral-purpose CTs (secondary rated current 5A or 1 A ) cannot directly be connected bacause there is a risk of damage.

CT for F-MPC04P (type number UM02), and F-MPC04S (type number UM03)

Model	Compact split		Square split		Toroidal	
Type	CC2D81-0057	CC2D81-0506	CC2D65-2008	CC2D54-4009	CC2B65-2008	CC2B54-4009
Dimesions	Fig. 1	Fig. 1	Fig. 2	Fig. 3	Fig. 4	Fig. 5
Rated primary current	5A	50A	200A	400A	200A	400A
Linear output limit	Depends on the measurement range of the main unit.					
Rated secondary current	7.34mA	73.4 mA	66.67 mA	133.33 mA	66.67 mA	133.33 mA
Through hole diameter	$\varnothing 10$		ø24	ø36	ø24	ø36
Rated frequency	50 to 60Hz		50 to 60Hz			
Overcurrent strength	10In continuous	1.OIn continuous	1.OIn continuous			
Ratio error	$\pm 1 \% / \mathrm{ln} \pm 1.5 \% / 0.2 \mathrm{ln}$					
Phase difference	$150 ' \pm 90 ' / \mathrm{In}, 180 ' \pm 120 ' / 0.2 \mathrm{ln}$		$\pm 60 ' / \mathrm{ln}, \pm 90 ' / 0.2 \mathrm{ln}$			
Rated burden	0.2693 mVA ( $5 \Omega$ load resistance)		44.4 mVA (10 $\Omega$ load resistance)	$\begin{array}{\|l\|} \hline 0.18 \mathrm{VA}(10 \Omega \\ \text { load resistance }) \\ \hline \end{array}$	44.4mVA (load resistance of $10 \Omega$ or less)	177.8mVA (load resistance of $10 \Omega$ or less)
Insulation resistance	$500 \mathrm{VDC} / 100 \mathrm{M} \Omega$ or more (between sensor core and output lead wire)				500VDC/100M2 or more (between through hole and output lead wire)	500VDC/100M2 or more (between through hole and output terminal)
Dielectric strength	2000VAC/min   (between sensor core and output lead wire)				2,500VAC/min (between through hole and output lead wire)	2,500VAC/min (between through hole and output terminal)
Output protection	-		3Vp built-in clamp diode	$\pm 3 \mathrm{Vp}$ built-in clamp diode	-	
Operating conditions	-20 to $75^{\circ} \mathrm{C}, 80 \% \mathrm{RH}$ or lower (No condensation)		-20 to $75^{\circ} \mathrm{C}, 80 \% \mathrm{RH}$ or lower (No condensation)			
Split portion securing method	Clamp		Clamp		-	
Mounting method	Hanger		Hanger			
Connection	Heat-resistant IV cable $0.3 \mathrm{~mm}^{2} \times 1,000 \mathrm{~mm}$		Heat-resistant IV cable AWG18, 1,000mm		PVC cable $0.3 \mathrm{~mm}^{2} \times 1,000 \mathrm{~mm}$	M3 screw terminal
Mass	45 g		200 g	300 g	60 g	180 g

## Specifications

CT for F-MPC04 (type number UM04)

Model	Square split			Toroidal split	
Type	CC2D74-1001	CC2D74-2001	CC2D74-4001	CC2C76-8001	CC2C76-12X1
Dimesions	Fig. 3			Fig. 6	
Rated primary current	100A	200A	400A	800A	1,200A
Linear output limit	Depends on the measurement range of the main unit.				
Rated secondary current	1A				
Through hole diameter	$ø 36$			$ø 60$	
Rated frequency	50 to 60 Hz				
Overcurrent strength	1.OIn continuous				
Ratio error	$\pm 1 \% / \mathrm{ln} \pm 1.5 \% / 0.2 \mathrm{ln}$			$\pm 1 \% / \mathrm{ln} \pm 1.5 \% / 0.2 \mathrm{ln} \pm 3 \% / 0.05 \mathrm{ln}$	
Phase difference	90 $\pm 90$ / In	60 $\pm 60$ '/ln	$\pm 80$ //n	$\pm 80 ' / \mathrm{ln}, \pm 100 / / 0$	
Rated burden	0.5 VA ( $0.5 \Omega$ load resistance)				
Insulation resistance	$500 \mathrm{VDC} / 100 \mathrm{M} \Omega$ or more (between sensor core and output lead wire)			$500 \mathrm{VDC} / 100 \mathrm{M} \Omega$ or more (between through hole and output)	
Dielectric strength	2000VAC/min   (between sensor core and output lead wire)			2500VAC/min (between through hole and output)	
Output protection	$\pm 1.4 \mathrm{Vp}$ with built-in clamp diode				
Operating conditions	-20 to $75^{\circ} \mathrm{C}, 80 \% \mathrm{RH}$ or lower (No condensation)				
Split portion securing method	Clamp				
Mounting method	Hanger				
Connection	Heat-resistant IV cable AWG18, 1,000mm			Vinyl cabtire cable $0.75 \mathrm{~mm}^{2} \times 1,000 \mathrm{~mm} \mathrm{2}^{2}$-core	
Mass	300 g			500 g	
Combination CT-BOX	UM04X-1			UM04X-1	

Note: • To cope with extension of CT output wire, CT with connector and relay cable are available.

- For CTs without build-in output protection diode, be sure to draw a primary current after connecting a rated load. Drawing a primary current without connecting
the rated load is dangerous bacause high voltage appears at the output terminal.
- CT-BOX to be used together with general-purpose CT (10 to 7500A/5A) is the UM04X-5.

Power Monitoring Equipment

## Current transformers

## CC2

## ■ Dimensions, mm



Fig2 CC2D65



Fig4 CC2B65
Fig5 CC2B54


Fig6 CC2C76


A	B	$\varnothing \mathrm{D}$	$\varnothing \mathrm{d}$
65	62	115	60

## Terminal relay RS16

## Description

The RS16 relay, in combination with F-MPC04 (type: UM01) power monitoring unit, outputs the current prealarm signal and leakage current pre alarm signal, and the signal to trip circuit breakers.

## ■ Specifications

Type		RS16-DE04H
No. of connectable circuits		5
Operate time		10 ms or less
Release time		10 ms or less
Vibration	Malfunctions durability	$10-55 \mathrm{~Hz} 1 \mathrm{~mm}$ double amplitude (0.61N max.)
	Mechanical durability	$10-55 \mathrm{~Hz} 1 \mathrm{~mm}$ double amplitude ( 0.61 N max.)   3 times in each $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ direction, total 18 times
Shock	Malfunctions durability	$100 \mathrm{~m} / \mathrm{s}^{2}$
	Mechanical durability	$200 \mathrm{~m} / \mathrm{s}^{2}, 2$ hours in each $\mathrm{X}, \mathrm{Y}$, $Z$ direction, total 6 hours
Operating ambient temperature		-25 to $55^{\circ} \mathrm{C}$ (no icing or no condensation)
Operating ambient humidity		35 to 85\%RH
Terminal screw size		M3
Tightening torque		0.5-0.7N • m
Mounting		Rail mounting (screw mounting also available)
Applicable crimp terminal		R1.25-3 (Max 6mm)
Applicable wire size		Max. 1.4mm dia.
LED color	Operation indication	Red
	Power source indication	Green
Coil surge suppressor		Diode
Max. No. of rely insertion		50
Insulation resistance (initial)		100M $\Omega$ (500V DC megger)
Dielectric strength	Between contact and coil	2000V AC, 1 minute
	Between same polarity contacts	1000 V AC, 1 minute
	Between reverse polarity contacts	2000V AC, 1 minute
	between heteropolar coils	500V AC, 1 minute
Mass		200 g

## Dimensions, mm



Connector cable
For connecting CT-BOX, Terminal relay RS16, and Connector terminal block AU-CW.

1m long	AUX014-201
$2 m$ long	AUX014-202
$3 m$ long	AUX014-203



## ■ Terminal arrangement


(0). Io trip
(0). 10 trip (No. 1 or 6
(1) :Io trip (No. 2 or 7)
(2) :Io trip (No. 3 or 8 )
(3) :Io trip (No. 4 or 9 )
(4) :Io trip (No. 5 or 0 )
5) :Io prealarm (No. 1 or 6 )
(6) :Io prealarm (No. 2 or 7 )
7) :Io prealarm (No. 3 or 8 )
(8) :Io prealarm (No. 4 or 9 )
(9) :Io prealarm (No. 5 or 0 )
(A) :I prealarm (No. 1 or 6 )
(B) :I prealarm (No. 2 or 7)
(C) :I prealarm (No. 3 or 8 )
(D) :I prealarm (No. 4 or 9 )
(E) :I prealarm (No. 5 or 0 )
(F):Unused
lo trip (No. 1 or 4)
lo trip (No. 2 or 5)
lo trip (No. 3 or 6 )
Unused
Unused
lo prealarm (No. 1 or 4)
lo prealarm (No. 2 or 5 ) lo prealarm (No. 3 or 6 )
Unused
Unused
I prealarm (No. 1 or 4)
I prealarm (No. 2 or 5)
I prealarm (No. 3 or 6)
Unused
Unused
Unused


## AU-CW21B1

## Connector terminal-block, AU-CW21B1

## Description

The AU-CW21B connector terminal-block, in combination with the FMPC04 (type: UM04) power monitoring unit, can output a kWh pulse.

- Specifications

Type	Front mounting	AU-CW21B1-04
	Rear mounting	AU-CW21B1-04R
Insulation voltage	60 V AC/DC	
Continuous current	$1 \mathrm{~A}\left(\right.$ at $\left.40^{\circ} \mathrm{C}\right)$	
No. of terminals	21	
No. of connectors	20	
Terminal screw size	M 3.5	
Insulation resistance	$100 \Omega$ or more	
Dielectric strength	500 V 1 min	
Allowable ambient temperature	-5 to $+40^{\circ} \mathrm{C}$	
Allowable ambient humidity	45 to 85\%RH	
Flame resistance	$\mathrm{UL94-V1}$	
Connection	Multi-core cable	$\mathrm{AUX014-20} \square^{*}$
cable	Flat cable	$\mathrm{AUX024-20} \square^{*}$

Note: * Specify cable length by replacing $\square$ with $1: 1 \mathrm{~m}, 2: 2 \mathrm{~m}$, or $3: 3 \mathrm{~m}$.



■ Ordering information
Specify the following:

1. Type number

Terminal arrangement and output

Terminal No.		Pulse output circuit No.	Remarks
	23	Circuit 1 pulse output	Circuit 1 to 6 pulse outputs are valid in 3-phase 4-wire system.
	22	Circuit 2 pulse output	
	21	Circuit 3 pulse output	
	20	Circuit 4 pulse output	
	19	Circuit 5 pulse output	
	18	Circuit 6 pulse output	
	17	Circuit 7 pulse output	
	16	Circuit 8 pulse output	
	10	Circuit 9 pulse output	
	9	Circuit 10 pulse output	
	15, 2	Common (-)	

Dimensions, mm


Connector mounting direction


Connection sheet
Connector No. Terminal No.


1	1	1	1	1	1	1	1	1	1
14	15	16	17	18	19	20	21	22	23

A	14	15	16	17	18	19	20	21	22	23
1	2	3	4	5	6	7	8	9	10	
1	1	1	1	1	1	1	1	1	1	
1	2	3	4	5	6	7	8	9	1	

Mounting: Screw or 35 mm IEC rail mounting

## Catalog Disclaimer

The information contained in this catalog does not constitute an express or implied warranty of quality, any warranty of merchantability of fitness for a particular purpose is hereby disclaimed.

Since the user's product information, specific use application, and conditions of use are all outside of Fuji Electric FA Components \& Systems'control, it shall be the responsibility of the user to determine the suitability of any of the products mentioned for the user's application.

## One Year Limited Warranty

The products identified in this catalog shall be sold pursuant to the terms and conditions identified in the "Conditions of Sale" issued by Fuji Electric FA with each order confirmation.

Except to the extent otherwise provided for in the Conditions of Sale issued by Fuji Electric FA, Fuji Electric FA warrants that the Fuji Electric FA products identified in this catalog shall be free from significant defects in materials and workmanship provided the product has not been: 1) repaired or altered by others than Fuji Electric FA; 2) subjected to negligence, accident, misuse, or damage by circumstances beyond Fuji Electric FA's control; 3) improperly operated, maintained or stored; or 4) used in other than normal use or service. This warranty shall apply only to defects appearing within one (1) year from the date of shipment by Fuji Electric FA, and in such case, only if such defects are reported to Fuji Electric FA within thirty (30) days of discovery by purchaser. Such notice should be submitted in writing to Fuji Electric FA at 5-7, Nihonbashi Odemma-cho, Chuo-ku, Tokyo, Japan. The sole and exclusive remedy with respected to the above warranty whether such claim is based on warranty, contract, negligence, strict liability or any other theory, is limited to the repair or replacement of such product or, at Fuji Electric FA's option reimbursement by Fuji Electric FA of the purchase price paid to Fuji Electric FA for the particular product. Fuji Electric FA does not make any other representations or warranties, whether oral or in writing, expressed or implied, including but not limited to any warranty regarding merchantability or fitness for a particular purpose. Except as provided in the Conditions of Sale, no agent or representative of Fuji Electric FA is authorized to modify the terms of this warranty in writing or orally.

In no event shall Fuji Electric FA be liable for special, indirect or consequential damages, including but not limited to, loss of use of the product, other equipment, plant and power system which is installed with the product, loss of profits or revenues, cost of capital, or claims against the purchaser or user of the product by its customers resulting from the use of information, recommendations and descriptions contained herein. The purchaser agrees to pass on to its customers and users, in writing at the time inquiries and orders are received by buyer, Fuji Electric FA's warranty as set forth above.

## . Caution "Safety precautions"

- Operate (keep) in the environment specified in the operating instructions and manual. High temperature, high humidity, condensation, dust, corrosive gases, oil, organic solvents, excessive vibration or shock might cause electric shock, fire, erratic operation or failure.
- Follow the regulations of industrial wastes when the product is to be discarded.
- The products covered in this catalogs have not been designed or manufactured for use in equipment or systems which, in the event of failure, can lead to loss of human life.
- If you intend to use the products covered in this catalog for special applications, such as for nuclear energy control, aerospace, medical, or transportation, please consult our Fuji Electric FA agent.
- Be sure to provide protective measures when using the product covered in these catalogs in equipment which, in the event of failure, may lead to loss of human life or other grave results.
- Follow the directions of the operating instructions when mounting the product.

D\&C CATALOG DIGEST INDEX	
Individual catalog No.	LOW VOLTAGE PRODUCTS Up to 600 Volts
01	Magnetic Contactors and Starters Thermal Overload Relays, Solid-state Contactors
02	Manual Motor Starters and Contactors Combination Starters
$03$	Industrial Relays, Industrial Control Relays Annunciator Relay Unit, Time Delay Relays
04	Pushbuttons, Selector Switches, Pilot Lights   Rotary Switches, Cam Type Selector Switches   Panel Switches, Terminal Blocks, Testing Terminals
05	Limit Switches, Proximity Switches Photoelectric Switches
$06$	Molded Case Circuit Breakers Air Circuit Breakers
07	Earth Leakage Circuit Breakers Earth Leakage Protective Relays
08	Circuit Protectors   Low Voltage Current-Limiting Fuses
09	Measuring Instruments, Arresters, Transducers   Power Factor Controllers   Power Monitoring Equipment (F-MPC)
10	AC Power Regulators Noise Suppression Filters Control Power Transformers
	HIGH VOLTAGE PRODUCTS Up to 36kV
11	Disconnecting Switches, Power Fuses Air Load Break Switches Instrument Transformers — VT, CT
$12$	Vacuum Circuit Breakers, Vacuum Magnetic Contactors Protective Relays

## INDIVIDUAL CATALOG 09

Fuji Electric FA Components \& Systems Co., Ltd.
5-7, Nihonbashi Odemma-cho, Chuo-ku, Tokyo, 103-0011, Japan
URL http://www.fujielectric.co.jp/fcs/eng


[^0]:    (Be sure to specify the input value.)

[^1]:    $\star^{3}$ The multiplying factor is 0.01 , but 0.1 is displayed for the multiplying factor.
    ${ }_{4}$ (Four digits are displayed for the integer portion, and four digits are displayed below the decimal point for the expanded display.)
    ${ }^{4}$ A combination of two of the following outputs can be used: pulse output, alarm output, and CPU error output (only one CPU error output can be used).

[^2]:    Note: *1 The addressing of RS-485 can be set by the WH7PD PC loader.

[^3]:    * Refer to the table above or rated specifications, prices, and shipment.

[^4]:    Note *1: This gives the value when lightning surge voltage is applied between wires with one wire grounded
    *2: This gives the total value for voltage to ground for each wire. Category C 2 indicates the current value with power applied 5 times each for positive and negative polarities at a current waveform of $8 / 20 \mu \mathrm{~s}$, and category D1 indicates the current value with power applied one time each for positive and negative polarities at a current waveform of $10 / 350 \mu \mathrm{~s}$.

[^5]:    Note *1: This gives the value when lightning surge voltage is applied between wires with one wire grounded.

[^6]:    Notes: * Replace the $\square$ mark by the secondary current code

[^7]:    Note: * Value at shipment

[^8]:    $\mathrm{K}_{2}$ : Figures obtained by $\cos \theta_{2}$

[^9]:    ○ Available - Not available

[^10]:    *1: The operation guaranteed temperature is a temperature at which operation is guaranteed within two times of the guaranteed accuracy value at JEC characteristics guaranteed temperature, or within the accuracy of influence of JIS temperature.

[^11]:    *1: The operating time of protective OC 51 is saturated at about 150 ms .
    The operating time will be saturated at 20 times of CT rated current when the setting exceeds $200 \%$.
    For example, the operating time becomes $833 \%(=2000 \% /(240 \% \cdot 100))$ of the CT rated current in $240 \%$ setting.

[^12]:    Note *1: FMPC 04 (UM04) is connected to CT via CT-BOX. For combination of F-MPC04 (UM04), CT-BOX and CT, See page 09/120 and 09/135; "Applicable CT."

[^13]:    Note : Use the display and set unit to change the transmission setting.
    The communications specifications cannot be changed through the host controller.

[^14]:    Note: *1 Select either the current pre-alarm output or the power alarm output through setup.
    ${ }^{* 2}$ When demand time is selected, the unit operates on lob (leakage current only with fundamental wave).

