

- VACUUM CIRCUIT BREAKERS
- VACUUM MAGNETIC CONTACTORS

PROTECTIVE RELAYS

INDIVIDUAL CATALOG from D\&C CATALOG 20th Edition

H.V. Vacuum circuit breakers

Vacuum magnetic contactors
Protective relays

	Page
Vacuum Circuit Breakers	General information .. 12/1
	Advantages ... 12/2
	HS series
	General information... 12/4
	Specifications .. 12/5
	Types and ratings .. 12/11
	Installation and accessories .. 12/14
	Dimensions .. 12/15
	Wiring diagrams ... 12/24
	Application guide ... 12/25
	Auto. V
	Specifications .. 12/26
	Design features .. 12/27
	Types and ratings ... 12/29
	New-Auto. V ... 12/30
	Installation and accessories .. 12/35
	Dimensions ... 12/38
	Wiring diagrams .. 12/42
	Multi VCB
	Specifications ... 12/45
	Types and ratings .. 12/47
	Installation and accessories .. 12/48
	Dimensions ... 12/50
	Wiring diagrams .. 12/54
Vacuum Magnetic Contactors	HN series .. 12/57
Protective Relays	QH series
	General information... 12/66
	Dimensions .. 12/69
	Wiring diagrams .. 12/70

MINIMUM ORDERS

Orders amounting to less than $\mathbf{¥ 1 0 , 0 0 0}$ net per order will be charged as $¥ 10,000$ net per order plus freight and other charges.

WEIGHTS AND DIMENSIONS

Weights and dimensions appearing in this catalog are the best information available at the time of going to press. FUJI ELECTRIC FA has a policy of continuous product improvement, and design changes may make this information out of date.
Please confirm such details before planning actual construction.

INFORMATION IN THIS CATALOG IS SUBJECT TO CHANGE WITHOUT NOTICE.

H.V. Distribution Equipment
 Vacuum circuit breakers
 General information

■ FUJI vacuum circuit breakers

Vacuum circuit breakers are compact circuit breakers designed for safe operation, high reliability and easy maintenance, and are widely used for various types of high voltage circuits. FUJI V-circuit breakers (VCB) have been developed through the use of our many years of successful experience and advanced technology. They are compact and light-weight, and are available in a number of current ratings.

- HS series

These types are available in all ratings from 3.6 to 36 kV , and can be applied to a variety of H.V. switchgear. The motorspring stored-energy types feature autoreclosing. The HS types are comparatively high in breaking current with ratings of over 7.2 kV , 20 kA .

- Breaking currents: 12.5 kA to 50 kA
- Rated voltage: 3.6 kV to 36 kV
- Standards: JEC, IEC

See page 12/4.

- Auto. V

Auto. Vs are provided with a built-in electronic overcurrent relay and toroidaltype CT.
They require little space for installation and also facilitate the system wide protective coordination.
The inverse-time operating and instantaneous trip currents can be set by means of the dial.

- Breaking currents: 8kA, 12.5kA
- Rated voltage: 3.6/7.2kV
- Standards: JIS C4603

See page 12/26.

- Quick selection table

Breaking current (kA)	Rated current JIS, JEC (A)	Rated voltage (kV)	Closing system	Type Installation	Breaking current (kA)	Rated current JIS, JEC (A)	Rated voltage (kV)	Closing system	Type \square : Installation
20 25	$\begin{array}{r} 600 \\ 1200 \\ 2000 \\ \hline \end{array}$	$3.6 / 7.2$	Motor-spring	HS2006 $\square-06 M f-E$ HS2006 $\square-12 M f-E$ HS2006 $\square-20 M f-E$	40	$\begin{aligned} & \hline 1200 \\ & 2000 \\ & 3000 \\ & 4000 \end{aligned}$	12	Motor-spring	$\begin{aligned} & \text { HS4010 } \square \text {-12Mf-NA } \\ & \text { HS4010 } \square-20 \mathrm{Mf}-\mathrm{NA} \\ & \text { HS4010 } \\ & \text { HS4010 } \square-40 \mathrm{Mf}-\mathrm{N} \end{aligned}$
25 31.5	$\begin{array}{r} 600 \\ 1200 \\ 2000 \\ \hline 1200 \end{array}$	$3.6 / 7.2$ $3.6 / 7.2$		HS2506■-06Mf-E HS2506■-12Mf-E HS2506 \square-20Mf-E HS3106■-12Mf-E	50	$\begin{aligned} & 4000 \\ & \hline 1200 \\ & 2000 \\ & 3000 \\ & \hline \end{aligned}$	12		HS5010 \square-12Mf-NA HS5010 \square-20Mf-NA HS5010 \square-30Mf-N
31.5	$\begin{aligned} & 2000 \\ & 3000 \end{aligned}$	3.6/7.2		$\begin{aligned} & \text { HS3106■-20Mf-E } \\ & \text { HS3106■-30Mf-N } \end{aligned}$	12.5	$\begin{array}{r} 600 \\ 1200 \\ \hline \end{array}$	24		$\begin{aligned} & \hline \text { HS1220 } \square-06 M f-K \\ & \text { HS1220 } \square-12 M f-K \\ & \hline \end{aligned}$
40	$\begin{aligned} & 1200 \\ & 2000 \end{aligned}$	3.6/7.2		$\begin{aligned} & \text { HS4006 } \square-12 \mathrm{Mf}-\mathrm{E} \\ & \text { HS4006 } \square-20 \mathrm{Mf}-\mathrm{E} \end{aligned}$	16	$\begin{array}{r} 600 \\ 1200 \\ \hline \end{array}$	24		$\begin{aligned} & \hline \text { HS1620 } \square-06 \mathrm{Mf}-E \\ & \text { HS1620 } \square \text {-12Mf-E } \end{aligned}$
	$\begin{array}{r} 3000 \\ 4000 \\ \hline \end{array}$		Discontinued Mar:2007	$\begin{aligned} & \text { HS4006 } \square \text {-30Mf-N } \\ & \text { HS } 4006 \square-40 \mathrm{Mf}-\mathrm{N} \end{aligned}$	25	$\begin{array}{r} 600 \\ 1200 \end{array}$	24		HS2520 \square-06Mf-E HS2520 $-12 \mathrm{Mf}-\mathrm{E}$ HS2520 $\square-20 \mathrm{Mf}-\mathrm{E}$
50	1200	3.6/7.2		HS5006■-12Mf-NA HS5006■-20Mf-NA HS5006 $\square-30 \mathrm{Mf}-\mathrm{N}$		2000			
	$\begin{aligned} & 2000 \\ & 3000 \end{aligned}$				40	$\begin{aligned} & 1200 \\ & 2000 \end{aligned}$	24		HS4020 \square-12Mf-N HS4020 HS $4020 \mathrm{Mf}-\mathrm{N}$
12.5	600	12		$\begin{aligned} & \hline \text { HS1210 } \square \text {-06Mf-E } \\ & \text { HS1210 -12Mf-E } \\ & \text { HS1210 }-20 \mathrm{Mf}-E \end{aligned}$		3000			
	$\begin{aligned} & 1200 \\ & 2000 \\ & \hline \end{aligned}$				25	$\begin{array}{r} 600 \\ 1200 \end{array}$	36		HS2530 \square-06Mf-N HS2530 \square-12Mf-N HS2530 $-20 \mathrm{Mf}-\mathrm{N}$
16	$\begin{array}{r} 600 \\ 1200 \\ 2000 \end{array}$	12		$\begin{array}{\|l} \hline \text { HS1610 } \square \text {-06Mf-E } \\ \text { HS1610 -12Mf-E } \\ \text { HS1610 } \square-20 \mathrm{Mf}-E \end{array}$		2000			
					$\begin{array}{r} 8.0 \\ 12.5 \\ \hline \end{array}$	$\begin{aligned} & 400 \\ & 600 \\ & \hline \end{aligned}$	3.6/7.2	Manual-spring	$\begin{aligned} & \text { HA08 } \square-\mathrm{H}[\\ & \text { HA12 } \square-\mathrm{H} \end{aligned}$
20	$\begin{array}{r} 600 \\ 1200 \\ 2000 \end{array}$	12		$\begin{aligned} & \text { HS2010 } 0-06 \mathrm{Mf}-\mathrm{E} \\ & \text { HS2010-12Mf-E } \\ & \text { HS2010-20Mf-E } \end{aligned}$	$\begin{array}{r} 8.0 \\ 12.5 \end{array}$	$\begin{aligned} & 400 \\ & 600 \end{aligned}$	3.6/7.2	Motor-spring Fixed	$\begin{aligned} & \text { HA08 } \square \text { A } \square \\ & \text { HA12 } \square-\mathbf{A} \square \end{aligned}$
25	$\begin{array}{r} 600 \\ 1000 \end{array}$	12		$\begin{aligned} & \text { HS2510 } \square-06 \mathrm{Mf}-\mathrm{E} \\ & \text { HS2510 } \square \text {-12Mf-E } \\ & \text { HS2510 }-20 \mathrm{Mf}-\mathrm{E} \end{aligned}$	$\begin{array}{r} 8.0 \\ 12.5 \end{array}$	$\begin{aligned} & 400 \\ & 600 \end{aligned}$	3.6/7.2	Motor-spring Draw-out	$\begin{aligned} & \text { HA08A } \square-A 8 \\ & \text { HA12A } \square-A 8 \end{aligned}$
	2000				$\begin{array}{r} \hline 8.0 \\ 12.5 \end{array}$	$\begin{aligned} & 400 \\ & 600 \end{aligned}$	3.6/7.2	Motor-spring Fixed	$\begin{aligned} & \text { HA08 } \square-\mathbf{A} \\ & \text { HA12 } \square-\mathbf{A} \end{aligned}$
31.5	$\begin{aligned} & 1200 \\ & 2000 \\ & 3000 \end{aligned}$	12		$\begin{aligned} & \text { HS3110 } \square \text {-12Mf-E } \\ & \text { HS3110 -20Mf-E } \\ & \text { HS3110 } \square-30 \mathrm{Mf}-\mathrm{N} \end{aligned}$	$\begin{array}{r} 8.0 \\ 12.5 \end{array}$	$\begin{aligned} & 400 \\ & 600 \end{aligned}$	3.6/7.2	Motor-spring Draw-out	$\begin{aligned} & \text { HA08A } \square-A ~ \\ & \text { HA12A } \square-A \end{aligned}$

- Multi VCB

The Multi VCBs are general purpose VCBs which are small in size and simple in construction thus allowing them to be applied to many types of switchgear.

- Breaking currents: 8kA, 12.5kA
- Rated voltage: 3.6/7.2kV
- Standards: JIS C4603

See page 12/45.

[^0]
H.V. Distribution Equipment Vacuum circuit breakers Advantages

- Description

3.6 kV to $36 \mathrm{kV}, 600$ to $4000 \mathrm{~A}, 12.5$ to 50 kA

The revolutionary arc extinguishing system

- Rotary

FUJI VCBs have employed a unique design principle in which the contacts are provided with a succession of slits having toroidal-type CrCu contacts mounted on them.
The arc is driven round the circular contact surface as it is being extinguished. Since the arc is not localized at one point there is no fear of overheating.
This results in much improved interelectrode dielectric strength so ensuring excellent breaking capability. Moreover, uneven contact wear is minimized.

- Getter

FUJI vacuum interrupters make use of the gettering effect. The toroidal-type contacts are made of a
 special chromium-copper
 (CrCu) alloy specially developed by FUJI so as to ensure a large "getter" quality.
The metallic gases thus produced at interruption and left in the vacuum are quickly absorbed by the getter. The gases are neutralized so maintaining the high degree of vacuum.
The interrupters require a minimum of attention over their long service life.

- Surge

Switching surges can be generated at small current breaking due to the VCB inherent chopping current.

FUII has paid much attention to this problem, and after much effort on design and materials research it has been possible to reduce the chopping current to 3.5 Amps. This very small chopping current means that the corresponding surge voltage will be reduced and cost efficient surge protection can be carried out for motors, transformers and other load equipment.

The revolutionary arc extinguishing system

H.V. Distribution Equipment Vacuum circuit breakers Advantages

- Progress of arc extinction

Arcs generated by VCBs have inherent characteristics that change when approximately 10 kA is reached. Less than 10kA a dispersed arc occurs, over this value the arc is concentrated. The photos were taken consecutively and illustrate an interruption in the 25 kA range (concentrated arc). About 41/2 rotations occurred (10 ms at 50 Hz). This time is typical, but varies according to breaking current and arcing times.

Explanation

1. The contacts begin to open and the arc moves from the center to the left hand side.
2. 3. The arc is driven round the toroidal-type contact surface.
1. The contacts are in the full open position just before interruption is completed.

- Definitions

- What is the action of the "getter"?

Sometimes called a "degasser" the "getter" uses a special material such as zirconium alloy that has the property of absorbing metallic gases in a vacuum. This allows the high degree of vacuum to be maintained.

- Switching surges and VCBs?

Switching surges can be generated when breaking currents within several hundreds range.
VCB inherent switching surges are generated under certain specific conditions which mainly comprise current chopping surges and multiple current reignition surges. No problem is posed by switching surges when breaking current exceeds several hundred amperes.

Surge voltages

The value of the surge voltage due to switching surges varies according to the \uparrow
load circuit conditions.
This can be expressed in the following simple formula:
Surge voltage $=$ Surge impedance \times
Chopping current
Therefore, it is necessary to keep the chopping current low in order to reduce the surge voltage to the minimum. The peak transient voltage is obtained by adding to the above calculation the voltage on the load side at the time of current chopping.

Chopping surge

The chopping surge occurs when a low current is interrupted, the arc is unstable before current becomes zero and the current is forcedly chopped. At this time a surge is generated by the energy remaining in the load inductance. Example:
When the no-load interruption of a transformer is carried out the exciting current only is interrupted.

Chopping surge

Multiple reignition surge

The multiple reignition surges can occur when breaking currents range from tens to hundreds of amperes. Although no problem is normally posed even when breaking these currents,

Ic : Chopping current
VI : Voltage at load side
Vs : Surge transient voltage
V_{P} : Peak transient voltage $\mathrm{V}=\mathrm{VI}+\mathrm{Vs}$
VS $=$ Surge impedance \times Ic
Surge impedance:

$$
Z=\sqrt{\frac{L}{C}}
$$

H.V. Distribution Equipment
 Vacuum circuit breakers
 HS series/General information

Description

HS type 3.6 kV to 36 kV up to 63 kA . FUJI HS series vacuum circuit breakers are designed to meet the many special needs of industry. The vacuum interrupter system employed reflects the latest technology. The circuit breaker has a very stable and constant breaking performance over a wide range of currents up to the rated short circuit current value.
The motor spring type (M) closing system can perform high speed reclosing.
The contacts are made of a special alloy and require no maintenance over their long life time.
The interrupter is provided with a contact-wear indicator which gives notice when replacement is required. The open and close positioning indicator, operating counter, pushbutton for manual interruption and manual closing device are conveniently installed on the control section of the dead-front operating panel, and are isolated from the high-voltage breaking section for safety reasons and to facilitate operation and inspection. FUJI VCBs comprise the fixed mounted (P) type and cradle (X and Y) types. Since the cradle version is provided with a draw-out system switchgear assembly is easily carried out.

■ Ordering information

Specify the following:

1. Type number
2. Rated voltage, current and frequency
3. Rated breaking capacity
4. Installation system
5. Operating voltage and frequency (M) of closing system
6. Voltage and current of tripping system
7. Optional accessories, if required

Series of FUJI VCB

```Rated voltage Breaking current```	3.6 kV	7.2kV	12kV	15kV	24 kV	36 kV
12.5kA			$\begin{aligned} & \hline \text { HS1210: 600A } \\ & \text { 1200A, 2000A } \end{aligned}$	-	$\begin{aligned} & \text { HS1220: 600A } \\ & \text { 1200A } \\ & \hline \end{aligned}$	-
16kA			HS1610: 600A 1200A, 2000A	HS1615: 600A,   1200A, 2000A	$\begin{aligned} & \text { HS1620: 600A } \\ & \text { 1200A } \end{aligned}$	-
20kA	$\begin{array}{\|l} \hline \text { HS200 } \\ \text { 1200A, } \end{array}$	$\begin{aligned} & 600 \mathrm{~A} \\ & 000 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { HS2010: 600A } \\ & \text { 1200A, 2000A } \end{aligned}$	$\begin{aligned} & \hline \text { HS2015: 600A, } \\ & 1200 \mathrm{~A}, 2000 \mathrm{~A} \end{aligned}$	-	-
25kA	$\begin{aligned} & \hline \text { HS2506 } \\ & \text { 1200A, } \end{aligned}$	$\begin{aligned} & 3: 600 \mathrm{~A} \\ & 2000 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { HS2510: 600A } \\ & \text { 1200A, 2000A } \end{aligned}$	$\begin{aligned} & \hline \text { HS2515: 600A, } \\ & \text { 1200A, 2000A } \end{aligned}$	$\begin{aligned} & \text { HS2520: 600A } \\ & \text { 1200A, 2000A } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { HS2530: 600A } \\ & \text { 1200A, 2000A } \end{aligned}$
31.5 kA	$\begin{aligned} & \mathrm{HS} 3106 \\ & \text { 2000A, } \end{aligned}$	$\begin{aligned} & : 1200 \mathrm{~A} \\ & 3000 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { HS3110: 1200A } \\ & \text { 2000A, 3000A } \end{aligned}$	HS3115: 600A, 1200A, 2000A	-	-
40kA	$\begin{aligned} & \text { HS4006 } \\ & \text { 2000A, } \\ & \text { 4000A4 } \end{aligned}$	$\begin{aligned} & : 1200 \mathrm{~A} \\ & 3000 \mathrm{~A}, \\ & 000 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { HS4010: 1200A } \\ & \text { 2000A, 3000A } \end{aligned}$	HS4015: 600A, 1200A, 2000A	$\begin{aligned} & \text { HS4020: 1200A } \\ & \text { 2000A, 3000A } \end{aligned}$	-
50kA	$\begin{aligned} & \text { HS5006; } \\ & \text { 2000A, } \end{aligned}$	$\begin{aligned} & : 1200 \mathrm{~A}, \\ & 3000 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline \text { HS5010: 1200A } \\ & \text { 2000A, 3000A } \end{aligned}$	-	-	-
63kA	$\begin{array}{\|l\|} \hline \text { HS6306 } \\ \text { 2000A } \end{array}$	1200A,	-	-	-	-

- Type number nomenclature



## ■ Specifications

Type			HS2006   -- Mi-E		$\text { HS2506 } \square$   - ${ }^{\text {CMf-E }}$		$\text { HS3106 } \square$   -- Mif-E	
Rated voltage [kV]			3.6	7.2	3.6	7.2	3.6	7.2
Rated current [A]$\square: 06,12,20,30$		JEC	$\begin{aligned} & 600,1200 \\ & 2000 \end{aligned}$		$\begin{aligned} & 600,1200 \\ & 2000 \end{aligned}$		1200, 2000, 3000	
		IEC	$\begin{aligned} & 630,1250 \\ & 2000 \end{aligned}$		$\begin{aligned} & 630,1250 \\ & 2000 \end{aligned}$		1250, 2000, 3000	
Rated breaking capacity		[kA]	20		25		31.5	
		[MVA] Ref. value	125	250	160	310	200	390
Rated short-circuit making current [kA]			50		63		80	
Rated short-time withstand current [kA]		JEC: 2 sec. IEC: 1 sec. *1	$\begin{aligned} & 20 \\ & 20 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & 31.5 \\ & 31.5 \\ & \hline \end{aligned}$	
Rated breaking time [cycle]			3		3		3	
Rated withstand voltage	Power frequency (1 min.)	$\begin{array}{\|l\|} \hline \mathrm{JEC}[\mathrm{kV}] \\ \text { IEC }[\mathrm{kV}] \\ \hline \end{array}$	$\begin{aligned} & 22 \\ & 20 \\ & \hline \end{aligned}$		$\begin{aligned} & 22 \\ & 20 \\ & \hline \end{aligned}$		$\begin{aligned} & 22 \\ & 20 \\ & \hline \end{aligned}$	
	Impulse ( $1.2 \times 50 \mu \mathrm{~s}$ ) [kV]		60		60		60	
Closing time at no load [sec]			0.04		0.04		0.04 (3000A: 0.05)	
Rated operating sequence		$\begin{array}{\|l} \hline \text { JEC } \\ \text { IEC } \end{array}$	$\begin{aligned} & \mathrm{O}-1 \mathrm{~min}-\mathrm{CO}-3 \mathrm{~min}-\mathrm{CO}, \\ & \mathrm{O}-3 \mathrm{~min}-\mathrm{CO}-3 \mathrm{~min}-\mathrm{CO} \end{aligned}$		$\begin{aligned} & \mathrm{CO}-15 \mathrm{~s}-\mathrm{CO} \text { or O-0.35s-CO-1min-CO } \\ & \text { CO-15s-CO or O-0.3s-CO-3min-CO } \end{aligned}$			
Opening time [sec.]		JEC	0.03		0.03		0.03	
		IEC	0.03		0.03		0.03	
Closing system			Motor-spring stored energy (High speed reclosing) (M)					
Operating voltage and current for closing			100 V AC/DC, $1.7 \mathrm{~A}^{* 3}$ 200V AC/DC, 1A		100 V AC/DC, 2A 200V AC/DC, 1A		100V AC/DC, 2.5A 200V AC/DC, 1.7A	
Control voltage and current for closing			100V AC/DC, 4A 200V AC/DC, 2A		100 V AC/DC, 4A 200V AC/DC, 2A		100 V AC/DC, 5 A 200 V AC/DC, 2.5 A	
Tripping system*2			Shunt trip (f)					
Operating voltage and current for tripping			$\begin{array}{ll} 100 \mathrm{~V} D C, & 4 \mathrm{~A} \\ 200 \mathrm{VC}, & 2 \mathrm{~A} \\ \hline \end{array}$				$\begin{aligned} & 100 \mathrm{~V} D C, 4 \mathrm{~A} \\ & 200 \mathrm{VC}, 2 \mathrm{~A} \end{aligned}$	
Auxiliary contact			4NO+4NC, Rating 100/200V AC: 20/10A, 100/200V DC: 5/3A					
Durability Mechanical [operations]    Electrical [operations]			$\begin{aligned} & 10000 \\ & 10000 \\ & \hline \end{aligned}$					
Installation $\square$			$\begin{aligned} & \text { P, Y } \\ & \text { X, U (600, 1200A only }) \end{aligned}$		$\begin{aligned} & \mathrm{P}, \mathrm{Y} \\ & \mathrm{X}, \mathrm{U}(600,1200 \mathrm{~A} \text { only }) \end{aligned}$		$\begin{aligned} & \text { P, Y } \\ & \text { X (1200, 2000A only }) \end{aligned}$	
Mass (draw-out type without cradle)[kg]			$\begin{gathered} 62 \text { (X, U, Y: 600A) } \\ 66 \text { (Y: 1200A) } \\ 117 \text { (Y: 2000A) } \\ \hline \end{gathered}$		$\begin{gathered} 66 \text { (X, U, Y: 600A) } \\ 70 \text { (Y: 1200A) } \\ 117 \text { (Y: 2000A) } \\ \hline \end{gathered}$		$\begin{aligned} & 122 \text { (X, Y: 1200A) } \\ & 130 \text { (X, Y: 2000A) } \\ & 220 \text { (Y: 3000A) } \\ & \hline \end{aligned}$	

Notes: *1 Contact FUJI for the information concerning the 3 sec. rating of IEC.
*2 If capacitor tripping system is required, connect a capacitor trip device VCB-T1A or VCB-T2A (optional accessory) to AC power supply.
*3 2A for 2000A rating.

## H.V. Distribution Equipment

## Vacuum circuit breakers

## HS series

## ■ Specifications

Type			HS4006 $\square$   -TMf-E		$\begin{aligned} & \text { HS4006 } \\ & \text {-40Mf-N } \end{aligned}$		$\begin{aligned} & \text { HS5006■ } \\ & \text {-■Mf-NA } \end{aligned}$		$\begin{aligned} & \text { HS5006 } \square \\ & \text {-30Mf-N } \end{aligned}$		HS6306   - $\mathbf{m}$ Mf-NB	
Rated voltage [kV]			3.6	7.2	3.6	7.2	3.6	7.2	3.6	7.2	3.6	7.2
Rated current [A]$12,20,30$		JEC	1200, 2000, 3000		4000		1200, 2000		3000		1200, 2000	
		IEC	1250, 2000, 3000		4000		1250, 2000		3000		1250, 2000	
Rated breaking capacity		[kA]	40		40		50		50		63	
		[MVA] Ref. value	250	500	250	500	310	620	310	620	390	780
Rated short-circuit making current [kA]			100		100		125		125		160	
Rated short-time withstand current [kA]		JEC: 2 sec. IEC: 1 sec. *1	$\begin{aligned} & 40 \\ & 40 \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline 40 \\ 40 \\ \hline \end{array}$		$\begin{aligned} & 50 \\ & 50 \end{aligned}$		$\begin{aligned} & 50 \\ & 50 \end{aligned}$		$\begin{aligned} & 63 \\ & 63 \end{aligned}$	
Rated breaking time [cycle]			5		5		5		5		5	
Rated withstand voltage	Power frequency (1 min.)	JEC [kV] IEC [kV]	$\begin{aligned} & 22 \\ & 20 \end{aligned}$		$\begin{aligned} & \hline 22 \\ & 20 \end{aligned}$		$\begin{aligned} & 22 \\ & 20 \end{aligned}$		$\begin{aligned} & \hline 22 \\ & 20 \end{aligned}$		$\begin{aligned} & 22 \\ & 20 \end{aligned}$	
	Impulse ( $1.2 \times 50 \mu \mathrm{~s}$ ) [kV]		60		60		60		60		60	
Closing time at no load [sec]			0.04(3000A: 0.05)		0.1		0.1		0.1		0.1	
Rated operating sequence		$\begin{array}{\|l\|} \hline \text { JEC } \\ \text { IEC } \\ \hline \end{array}$	$\mathrm{O}-1 \mathrm{~min}-\mathrm{CO}-3 \mathrm{~min}-\mathrm{CO}$, $\mathrm{CO}-15 \mathrm{~s}-\mathrm{CO}$ or $\mathrm{O}-0.35 \mathrm{~s}-\mathrm{CO}-1 \mathrm{~min}-\mathrm{CO}$   $\mathrm{O}-3 \mathrm{~min}-\mathrm{CO}-3 \mathrm{~min}-\mathrm{CO}$, $\mathrm{CO}-15 \mathrm{~s}-\mathrm{CO}$ or $\mathrm{O}-0.3 \mathrm{~s}-\mathrm{CO}-3 \mathrm{~min}-\mathrm{CO}$									
Opening time [sec.]		JEC	0.03		0.07		0.07		0.07		0.07	
		IEC	0.04		0.07		0.07		0.07		0.07	
Closing system			Motor-spring stored energy (High speed reclosing) (M)									
Operating voltage and current for closing			100 V AC/DC, 2.5A 200V AC/DC, 1.7A		100 V AC/DC, 6A 200 V AC/DC, 3 A		100 V AC/DC, 6A 200 V AC/DC, 3 A		100 V AC/DC, 6 A 200 V AC/DC, 3 A		100 V AC/DC, 6 A 200 V AC/DC, 3 A	
Control voltage and current for closing			100V AC/DC, 5A 200V AC/DC, 2.5A		100 V AC/DC, 4A 200 V AC/DC, 2 A		100V AC/DC, 4A 200V AC/DC, 2A		100 V AC/DC, 4A 200 V AC/DC, 2 A		100 V AC/DC, 4A 200 V AC/DC, 2 A	
Tripping system *2			Shunt trip (f)									
Operating voltage and current for tripping			$100 \mathrm{~V} D C, 4 \mathrm{~A}: \mathrm{JEC}$$3 \mathrm{~A}: \operatorname{IEC}$$200 \mathrm{~V} D, 2 \mathrm{~A}: \mathrm{JEC}$$1.5 \mathrm{~A}: \operatorname{IEC}$		100 V D, 4A 200 V DC, 2 A							
Auxiliary contact			4NO+4NC, Rating 100/200V AC: 20/10A, 100/200V DC: 5/3A									
Durability Mechanical [operations]      Electrical [operations]			$\begin{aligned} & 10000 \\ & 10000 \end{aligned}$									
$\overline{\text { Installation } \square}$			$\begin{aligned} & \text { P, Y } \\ & \text { X(1200, 2000A only) } \\ & \hline \end{aligned}$		P, X, Y		P, Y		P, Y		Y	
Mass (draw-out type without cradle) [kg]			$\begin{aligned} & 122(X, Y: 1200 \mathrm{~A}) \\ & 130(X, Y: 200 \mathrm{~A}) \\ & 220(\mathrm{Y}: 3000 \mathrm{~A}) \\ & \hline \end{aligned}$		400		240		320		350	

[^1]- Specifications

Type			$\text { HS1210 } \square$ -■Mf-E	HS1610 $\square$   -	HS2010   -mMf-E	HS2510   -nMf-E	HS3110   - - Mf-E
Rated voltage [kV]			12	12	12	12	12
$\begin{aligned} & \hline \text { Rated current }[A] \\ & \boxed{\square}: 06,12,20 \end{aligned}$		JEC	$\begin{aligned} & \hline 600,1200 \\ & 2000 \end{aligned}$	$\begin{aligned} & \hline 600,1200 \\ & 2000 \end{aligned}$	$\begin{aligned} & \hline 600,1200 \\ & 2000 \end{aligned}$	$\begin{aligned} & \text { 600, } 1200 \\ & 2000 \end{aligned}$	1200, 2000
		IEC	$\begin{aligned} & \hline 630,1250 \\ & 2000 \end{aligned}$	$\begin{aligned} & \hline 630,1250 \\ & 2000 \end{aligned}$	$\begin{aligned} & \hline 630,1250 \\ & 2000 \end{aligned}$	$\begin{aligned} & \hline 630,1250 \\ & 2000 \end{aligned}$	1250, 2000
Rated breaking capacity		[kA]	12.5	16	20	25	31.5
		[MVA] Ref. value	260	330	415	520	650
Rated short-circuit making current [kA]			31.5	40	50	63	80
Rated short-time withstand current [kA]		$\begin{aligned} & 2 \mathrm{sec} . \\ & : 1 \mathrm{sec} .{ }^{\star 1} \end{aligned}$	$\begin{aligned} & 12.5 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & \hline 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 31.5 \\ & 31.5 \end{aligned}$
Rated breaking time [cycle]			3	3	3	3	3
Rated withstand voltage	Power frequency $(1 \mathrm{~min}$.)	$\begin{aligned} & \mathrm{JEC}[\mathrm{kV}] \\ & \mathrm{IEC}[\mathrm{kV}] \end{aligned}$	$\begin{array}{\|l\|} \hline 28 \\ 28 \end{array}$	$\begin{aligned} & 28 \\ & 28 \end{aligned}$	$\begin{array}{\|l\|} \hline 28 \\ 28 \end{array}$	$\begin{aligned} & 28 \\ & 28 \end{aligned}$	$\begin{aligned} & \hline 28 \\ & 28 \end{aligned}$
	Impulse ( $1.2 \times 50 \mu \mathrm{~s}$ )	[kV]	75	75	75	75	75
Closing time at no load [sec.]			0.04	0.04	0.04	0.04	0.04
Rated operating sequence		$\begin{array}{\|l\|} \hline \mathrm{JEC} \\ \mathrm{IEC} \end{array}$	$\begin{array}{ll} \hline \mathrm{O}-1 \mathrm{~min}-\mathrm{CO}-3 \mathrm{~min}-\mathrm{CO}, & \mathrm{CO}-15 \mathrm{~s}-\mathrm{CO} \text { or O-0.35s-CO-1min-CO } \\ \mathrm{O}-3 \mathrm{~min}-\mathrm{CO}-3 \mathrm{~min}-\mathrm{CO}, & \mathrm{CO}-15 \mathrm{~s}-\mathrm{CO} \text { or O-0.3s-CO-3min-CO } \\ \hline \end{array}$				
Opening time [sec.]		JEC	0.03	0.03	0.03	0.03	0.03
		IEC	0.03	0.03	0.03	0.03	0.03
Closing system			Motor-spring stored energy (High speed reclosing) (M)				
Operating voltage and current for closing			100 V AC/DC, $1.7 \mathrm{~A}(600,1200 \mathrm{~A}), 2.5 \mathrm{~A}(2000 \mathrm{~A})$ 200 V AC/DC, 1A ( $600,1200 \mathrm{~A}), 1.7 \mathrm{~A}(2000 \mathrm{~A})$				100V AC/DC, 2.5A 200 V AC/DC, 1.7A
Control voltage and current for closing			100 V AC/DC, $4 \mathrm{~A}(600,1200 \mathrm{~A}), 5 \mathrm{~A}$ (2000A) 200 V AC/DC, 2 A ( $600,1200 \mathrm{~A})$, 2.5A (2000A)				100 V AC/DC, 5A $200 \mathrm{VAC} / \mathrm{DC}, 2.5 \mathrm{~A}$
Tripping system ${ }^{* 2}$			Shunt trip (f)				
Operating voltage and current for tripping			$\begin{aligned} & 100 \mathrm{~V} D \mathrm{DC}, 4 \mathrm{~A} \\ & 200 \mathrm{VC}, 2 \mathrm{~A} \\ & \hline \end{aligned}$				$\begin{aligned} & 100 \mathrm{VCC}, 4 \mathrm{~A} \\ & 200 \mathrm{~V}, 2 \mathrm{~A} \end{aligned}$
Auxiliary contact			4NO+4NC, Rating 100/200V AC: 20/10A, 100/200V DC: 5/3A				
Durability Mechanical [operations]   Electrical [operations]			$\begin{aligned} & 10000 \\ & 10000 \\ & \hline \end{aligned}$				
Installation $\square$			$\begin{aligned} & \hline \text { P, Y } \\ & X(600,1200 \mathrm{~A} \text { only }) \\ & \hline \end{aligned}$	$\begin{array}{l\|} \hline \text { P, Y } \\ X(600,1200 A \text { only }) \end{array}$	$\begin{array}{\|l\|} \hline \text { P, Y } \\ \text { X }(600,1200 \mathrm{~A} \text { only }) \\ \hline \end{array}$	$\begin{aligned} & \hline \text { P, Y } \\ & \text { X }(600,1200 \mathrm{~A} \text { only }) \end{aligned}$	P, X, Y
Mass (draw-out type, without cradle) [kg]			$\begin{gathered} 71 \text { (Y: 600A) } \\ 71 \text { (Y: 1200A) } \\ 130(\mathrm{X}, \mathrm{Y}: 2000 \mathrm{~A}) \end{gathered}$	$\begin{array}{\|c\|} \hline 71(\mathrm{Y}: 600 \mathrm{~A}) \\ 71(\mathrm{Y}: 1200 \mathrm{~A}) \\ 130(\mathrm{X}, \mathrm{Y}: 2000 \mathrm{~A}) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 71 \text { (Y: 600A) } \\ 71 \text { (Y: 1200A) } \\ 130(\mathrm{X}, \mathrm{Y}: 2000 \mathrm{~A}) \\ \hline \end{array}$	$\begin{gathered} 75 \text { (Y: 600A) } \\ 75(\mathrm{Y}: 1200 \mathrm{~A}) \\ 130(\mathrm{X}, \mathrm{Y}: 2000 \mathrm{~A}) \end{gathered}$	$\begin{aligned} & 122(X, Y: 1200 A) \\ & 130(X, Y: 2000 A) \end{aligned}$

Notes: *1 Contact FUJI for the information concening the 3 sec. rating of IEC.
*2 If capacitor tripping system is required, connect a capacitor trip device VCB-T1A or VCB-T2A (optional accessory) to an AC power supply.

## H.V. Distribution Equipment

## Vacuum circuit breakers

## HS series

## - Specifications

Type			$\begin{aligned} & \hline \text { HS3110 } \\ & -30 M f-N \end{aligned}$	HS4010   - MMf-NA	$\begin{aligned} & \text { HS4010 } \\ & \text { - } \quad \text { Mff-N } \end{aligned}$	HS5010   - mmf-NA	$\begin{aligned} & \text { HS5010 } \\ & -30 \mathrm{Mf}-\mathrm{N} \end{aligned}$
Rated voltage [kV]			12	12	12	12	12
Rated current [A]$12,20,30,40$		JEC	3000	1200, 2000	3000, 4000	1200, 2000	3000
		IEC	3000	1250, 2000	3000, 4000	1250, 2000	3000
Rated breaking capacity		[kA]	31.5	40	40	50	50
		[MVA] Ref. value	650	830	830	1040	1040
Rated short-circuit making current [kA]			80	100	100	125	125
Rated short-time withstand current [kA]		$\begin{aligned} & : 2 \mathrm{sec} . \\ & : 1 \mathrm{sec} .{ }^{* 1} \end{aligned}$	$\begin{aligned} & 31.5 \\ & 31.5 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$
Rated breaking time [cycle]			3	5	5	5	5
Rated withstand voltage	Power frequency (1 min.)	JEC [kV] IEC [kV]	$\begin{aligned} & 28 \\ & 28 \end{aligned}$	$\begin{aligned} & 28 \\ & 28 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & 28 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & 28 \end{aligned}$	$\begin{aligned} & 28 \\ & 28 \end{aligned}$
	Impulse (1.2×50 s )	[kV]	75	75	75	75	75
Closing time at no load [sec.]			0.1	0.1	0.1	0.1	0.1
Rated operating sequence		$\begin{array}{\|l\|} \hline \mathrm{JEC} \\ \mathrm{IEC} \end{array}$	$\mathrm{O}-1 \mathrm{~min}-\mathrm{CO}-3 \mathrm{~min}-\mathrm{CO}$, $\mathrm{CO}-15 \mathrm{~s}-\mathrm{CO}$ or O-0.35s-CO-1min-CO   $\mathrm{O}-3 \mathrm{~min}-\mathrm{CO}-3 \mathrm{~min}-\mathrm{CO}$, $\mathrm{CO}-15 \mathrm{~s}-\mathrm{CO}$ or O-0.3s-CO-3min-CO				
Opening time [sec.]		JEC	0.04	0.04	$0.04{ }^{* 3}$	0.07	0.07
		IEC	0.04	0.04	0.04*3	0.07	0.07
Closing system			Motor-spring stored energy (High speed reclosing) (M)				
Operating voltage and current for closing			100 V AC/DC, 6A $200 \mathrm{VAC} / D C, 3 \mathrm{~A}$				
Control voltage and current for closing			100V AC/DC, 4A 200V AC/DC, 2A				
Tripping system*2			Shunt trip (f)				
Operating voltage and current for tripping			$\begin{aligned} & 100 \mathrm{~V} D, 4 \mathrm{~A} \\ & 200 \mathrm{VC}, 2 \mathrm{~A} \end{aligned}$				
Auxiliary contact			4NO+4NC, Rating 100/200V AC: 20/10A, 100/200V DC: 5/3A				
Durability Mechanical [operations]    Electrical [operations]			$\begin{aligned} & 10000 \\ & 10000 \end{aligned}$				
Installation			P, Y	P, Y	$\begin{aligned} & \text { P, Y(3000A) } \\ & \text { X(4000A) } \end{aligned}$	P, Y	P, Y
Mass (draw-out type without cradle) [kg]			320	240	$\begin{aligned} & 320(3000 \mathrm{~A}) \\ & 400 \text { (4000A) } \end{aligned}$	240	320

Notes: *1 Contact FUJI for the information concerning the 3 sec. rating of IEC
*2 If capacitor tripping system is required, connect a capacitor trip device VCB-T1A or VCB-T2A (optional accessory) to AC power supply.
*3 0.07 s for 4000 A rating.

## ■ Specifications

Type			$\begin{aligned} & \hline \text { HS1215 } \square \\ & \text {-■Mf-N } \end{aligned}$	HS1615   - -Mf-N	$\overline{H S 2015} \square$   - - Mf-N	$\begin{aligned} & \text { HS2515 } \square \\ & \text {-■Mf-N } \end{aligned}$	$\text { HS3115 } \square$   -mmin	HS4015 $\square$   -TMf-N
Rated voltage [kV]			15	15	15	15	15	15
$\begin{aligned} & \text { Rated current }[A] \\ & \mathbf{\square}: 06,12,20,30 \end{aligned}$		JEC	$\begin{array}{\|l} \hline 600,1200 \\ 2000 \\ \hline \end{array}$	$\begin{aligned} & 600,1200 \\ & 2000 \end{aligned}$	$\begin{aligned} & 600,1200 \\ & 2000 \end{aligned}$	$\begin{aligned} & \hline 600,1200 \\ & 2000 \end{aligned}$	$\begin{aligned} & \hline 1200 \\ & 2000,3000 \\ & \hline \end{aligned}$	$\begin{aligned} & 1200 \\ & 2000,3000 \end{aligned}$
		IEC	$\begin{aligned} & 630,1250 \\ & 2000 \end{aligned}$	$\begin{aligned} & 630,1250 \\ & 2000 \end{aligned}$	$\begin{aligned} & 630,1250 \\ & 2000 \end{aligned}$	$\begin{aligned} & \hline 630,1250 \\ & 2000 \end{aligned}$	$\begin{aligned} & 1250 \\ & 2000,3000 \end{aligned}$	$\begin{aligned} & \hline 1250 \\ & 2000,3000 \end{aligned}$
Rated breaking capacity		[kA]	12.5	16	20		31.5	40
		[MVA] Ref. value	325	415	520	650	820	1040
Rated short-circuit making current [kA]			31.5	40	50	63	80	100
Rated short-time withstand current [kA]		$\begin{aligned} & 2 \mathrm{sec} . \\ & : 1 \mathrm{sec} .{ }^{* 1} \end{aligned}$	$\begin{aligned} & 12.5 \\ & 12.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 16 \\ 16 \\ \hline \end{array}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 31.5 \\ & 31.5 \end{aligned}$	$\begin{aligned} & \hline 40 \\ & 40 \end{aligned}$
Rated breaking time [cycle]			3			3	3	5
Rated withstand voltage	Power frequency (1 min.)	JEC [kV] IEC [kV]	$36$	36	$36$	$36$	$36$	$36$
	Impulse ( $1.2 \times 50 \mu$ s	[kV]	95	95	95	95	95	95
Closing time at no load [sec.]			0.1	0.1	0.1	0.1	0.1	0.1
Rated operating sequence JEC    IEC			$\mathrm{O}-1 \mathrm{~min}-\mathrm{CO}-3 \mathrm{~min}-\mathrm{CO}$, $\mathrm{CO}-15 \mathrm{~s}-\mathrm{CO}$ or O-0.35s-CO-1min-CO   $\mathrm{O}-3 \mathrm{~min}-\mathrm{CO}-3 \mathrm{~min}-\mathrm{CO}$, $\mathrm{CO}-15 \mathrm{~s}-\mathrm{CO}$ or O-0.3s-CO-3min-CO					
Opening time [sec.]		JEC	0.03	0.03	0.03	0.03	0.04	0.04
		IEC	0.03	0.03	0.03	0.03	0.04	0.04
Closing system			Motor-spring stored energy (High speed reclosing) (M)					
Operating voltage and current for closing			100 V AC/DC, 1.3 A 200V AC/DC, 0.8A				100 V AC/DC, 6A 200 V AC/DC, 3A	
Control voltage and current for closing			100 V AC/DC, 5 A 200 V AC/DC, 3 A				100 V AC/DC, 4A 200 V AC/DC, 2A	
Tripping system *2			Shunt trip (f)					
Operating voltage and current for tripping			100V DC, 4A 200V DC, 2A					
Auxiliary contact			4NO+4NC, Rating 100/200V AC: 20/10A, 100/200V DC: 20/10A					
Durability Mechanical [operations]      Electrical [operations]			$\begin{aligned} & \hline 10000 \\ & 10000 \end{aligned}$					
$\underline{\text { Installation } \square}$			P, X, Y	P, $\mathrm{X}, \mathrm{Y}$	P, $\mathrm{X}, \mathrm{Y}$	P, X, Y	P, Y	P, Y
Mass (draw-out type without cradle) [kg]			$\begin{aligned} & \hline 130 \text { (600A) } \\ & 130 \text { (1200A) } \\ & 140 \text { (2000A) } \end{aligned}$	$\begin{aligned} & \hline 130(600 \mathrm{~A}) \\ & 130(1200 \mathrm{~A}) \\ & 140(2000 \mathrm{~A}) \end{aligned}$	$\begin{aligned} & \hline 130(600 \mathrm{~A}) \\ & 130(1200 \mathrm{~A}) \\ & 140(2000 \mathrm{~A}) \end{aligned}$	$\begin{aligned} & \hline 130(600 \mathrm{~A}) \\ & 130(1200 \mathrm{~A}) \\ & 140(2000 \mathrm{~A}) \end{aligned}$	$\begin{aligned} & 195(1200 \mathrm{~A}) \\ & 195(2000 \mathrm{~A}) \\ & 320(3000 \mathrm{~A}) \end{aligned}$	$\begin{aligned} & 260(1200 \mathrm{~A}) \\ & 260(2000 \mathrm{~A}) \\ & 320(3000 \mathrm{~A}) \end{aligned}$

Notes: *1 Contact FUJI for the information concerning the 3 sec . rating of IEC.
*2 If capacitor tripping system is required, connect a capacitor trip device VCB-T1A or VCB-T2A (optional accessory) to AC power supply.

## H.V. Distribution Equipment

## Vacuum circuit breakers

## HS series

## - Specifications

Type			$\begin{aligned} & \hline \text { HS1220■ } \\ & \text {-חMf-K } \end{aligned}$	HS1620   --MIf-E	HS2520   --MI-E	$\begin{aligned} & \hline \text { HS4020■ } \\ & \text {-חMf-N } \end{aligned}$	$\begin{aligned} & \text { HS2530■ } \\ & \text {-MMf-N } \end{aligned}$
Rated voltage [kV]			24	24	24	24	36
$\begin{aligned} & \text { Rated current }[A] \\ & \square: 06,12,20,30 \end{aligned}$		JEC	600, 1200	600, 1200	$\begin{aligned} & 600,1200 \\ & 2000 \end{aligned}$	$\begin{aligned} & 1200,2000 \\ & 3000 \end{aligned}$	$\begin{aligned} & \hline 600,1200 \\ & 2000 \end{aligned}$
		IEC	630, 1250	630, 1250	$\begin{aligned} & 630,1250 \\ & 2000 \end{aligned}$	$\begin{aligned} & 1250,2000 \\ & 3000 \end{aligned}$	$\begin{aligned} & 630,1250 \\ & 2000 \end{aligned}$
Rated breaking capacity		[kA]	12.5	16	25	40	25
		[MVA] Ref. value	520	665	1000	1660	1600
Rated short-circuit making current [kA]			31.5	40	63	100	63
Rated short-time withstand current [kA]		$\begin{aligned} & .2 \mathrm{sec} . \\ & : 1 \mathrm{sec} \text {. }{ }^{* 1} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 12.5 \\ & 12.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{array}{\|l\|} \hline 25 \\ 25 \\ \hline \end{array}$	$\begin{aligned} & \hline 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$
Rated breaking time [cycle]			3	3	3	5	3
Rated withstand voltage	Power frequency   (1 min.)	$\begin{aligned} & \mathrm{JEC}[\mathrm{kV}] \\ & \mathrm{IEC}[\mathrm{kV}] \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & \hline 50 \\ & 50 \end{aligned}$	$\begin{array}{\|l\|} \hline 50 \\ 50 \end{array}$	$\begin{aligned} & \hline 50 \\ & 50 \end{aligned}$	$\begin{array}{\|l\|} \hline 70 \\ 70 \\ \hline \end{array}$
	Impulse ( $1.2 \times 50 \mu \mathrm{~s}$ )	[kV]	125	125	125	125	170
Closing time at no load [sec.]			0.04	0.04	0.04	0.1	0.1
Rated operating sequence		$\begin{aligned} & \hline \mathrm{JEC} \\ & \mathrm{IEC} \end{aligned}$	$\begin{array}{ll}\mathrm{O}-1 \mathrm{~min}-\mathrm{CO}-3 \mathrm{~min}-\mathrm{CO}, & \mathrm{CO}-15 \mathrm{~s}-\mathrm{CO} \text { or } \mathrm{O}-0.35 \mathrm{~s}-\mathrm{CO}-1 \mathrm{~min}-\mathrm{CO} \\ \mathrm{O}-3 \mathrm{~min}-\mathrm{CO}-3 \mathrm{~min}-\mathrm{CO}, & \mathrm{CO}-15 \mathrm{~s}-\mathrm{CO} \text { or } \mathrm{O}-0.3 \mathrm{~s}-\mathrm{CO}-3 \mathrm{~min}-\mathrm{CO}\end{array}$				
Opening time [sec.]		JEC	0.03	0.03	0.03	0.07	0.04
		IEC	0.03	0.03	0.03	0.07	0.04
Closing system			Motor-spring stored energy (High speed reclosing) (M)				
Operating voltage and current for closing			100V AC/DC, 2A 200V AC/DC, 1A		100V AC/DC, 2.5A 200V AC/DC, 1.7A	100V AC/DC 200V AC/DC	
Control voltage and current for closing			100 V AC/DC, 4A 200 V AC/DC, 2A		100V AC/DC, 5A 200V AC/DC, 2.5A	100V AC/DC 200V AC/DC	
Tripping system *2			Shunt trip (f)				
Operating voltage and current for tripping			100 V DC, 4A   200 V DC, 2 A				
Auxiliary contact			4NO+4NC, Rating 100/200V AC: 20/10A, 100/200V DC: 20/10A				
Durability Mechanical [operations]         Electrical [operations]			$\begin{aligned} & \hline 10000 \\ & 10000 \\ & \hline \end{aligned}$				
Installation $\square$			P, X, Y	P, X, Y	P, X, Y	P, Y	P, M, X
Mass (draw-out type without cradle) [kg]			$\begin{aligned} & 120(\mathrm{P}, \mathrm{X}: 600 \mathrm{~A}) \\ & 130(\mathrm{P}, \mathrm{X}: 1200 \mathrm{~A}) \\ & 150(\mathrm{Y}) \\ & \hline \end{aligned}$	$\begin{aligned} & 120(P, X: 600 A) \\ & 130(P, X: 1200 A) \\ & 150(Y) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 190(\mathrm{Y}: 600 \mathrm{~A}) \\ 190(\mathrm{Y}: 1200 \mathrm{~A}) \\ 200(\mathrm{Y}: 2000 \mathrm{~A}) \\ \hline \end{array}$	$\begin{aligned} & \hline 280(1200 \mathrm{~A}) \\ & 280(2000 \mathrm{~A}) \\ & 350(3000 \mathrm{~A}) \\ & \hline \end{aligned}$	$\begin{aligned} & 280(\mathrm{M}, \mathrm{X}: 600 \mathrm{~A}) \\ & 280(\mathrm{M}, \mathrm{X}: 1200 \mathrm{~A}) \\ & 300 \text { (M, X: 2000A) } \end{aligned}$

Notes: *1 Contact FUJI for the information concerning the 3 sec. rating of IEC.
*2 If capacitor tripping system is required, connect a capacitor trip device VCB-T1A or VCB-T2A (optional accessory) to AC power supply.

## ■ Types and ratings, 3.6/7.2kV

$\left.\begin{array}{l|l|l|l|l|l|l|l|l}\hline \text { Rating } \\ \text { Volts } \\ \text { (kV) }\end{array} \begin{array}{l}\text { Breaking } \\ \text { current } \\ \text { (kA) }\end{array}\right)$

■ Types and ratings, 12kV

Rating			Closing system		Tripping voltage Shunt-trip(f)	Type	Ordering code	$\begin{aligned} & \square: \text { Avaiable } \\ & \text { installation } \\ & \text { system *1 } \end{aligned}$
Volts   (kV)	Breaking current (kA)	Current (A)	Closing system *2	Operating voltage				
12	12.5	600	M	100/110V DC	100/110V DC	HS1210■-06Mf-E		P, X, Y
		1200	M	100/110V DC	100/110V DC	HS1210■-12Mf-E		
		2000	M	100/110V DC	100/110V DC	HS1210■-20Mf-E		
	16	600	M	100/110V DC	100/110V DC	HS1610■-06Mf-E		P, X, Y
		1200	M	100/110V DC	100/110V DC	HS1610■-12Mf-E		
		2000	M	100/110V DC	100/110V DC	HS1610 -20 Mf -E		
	20	600	M	100/110V DC	100/110V DC	HS2010 $\square-06 \mathrm{Mf}-\mathrm{E}$		P, X, Y
		1200	M	100/110V DC	100/110V DC	HS2010 $\square^{-12 M f-E ~}$		
		2000	M	100/110V DC	100/110V DC	HS2010 $\square-20 M f-E$		
Notes: ${ }^{* 1}$ Installation system			P: Fixed type   X: Draw-out type with cradle for JEM 1425 Class CW   Y: Draw-out type with cradle and shutter for JEM 1425 Class MW, PW					

## H.V. Distribution Equipment

## Vacuum circuit breakers

HS series

- Types and ratings, 12kV

Rating			Closing system		Tripping voltage Shunt-trip(f)	Type	Ordering code	
Volts (kV)	Breaking current (kA)	Current (A)	Closing system ${ }^{*} 2$	Operating voltage				
12	25	600	M	100/110V DC	100/110V DC	HS2510■-06Mf-E		P, X, Y
		1200	M	100/110V DC	100/110V DC	HS2510 $-12 \mathrm{Mf}-\mathrm{E}$		
		2000	M	100/110V DC	100/110V DC	HS2510 -20 Mf -E		
	31.5	1200	M	100/110V DC	100/110V DC	HS3110■-12Mf-E		P, X, Y
		2000	M	100/110V DC	100/110V DC	HS3110■-20Mf-E		
		3000	M	100/110V DC	100/110V DC	HS3110 $\square-30 \mathrm{Mf}-\mathrm{N}$		P, Y
	40	1200	M	100/110V DC	100/110V DC	HS4010 $\square$-12Mf-NA		P, Y
		2000	M	100/110V DC	100/110V DC	HS4010 -20 Mf -NA		
		3000	M	100/110V DC	100/110V DC	HS4010 $\square$-30Mf-N		P, Y
		4000	M	100/110V DC	100/110V DC	HS4010 $\square$-40Mf-N		X
	50	1200	M	100/110V DC	100/110V DC	HS5010 $\square$-12Mf-NA		P, Y
		2000	M	100/110V DC	100/110V DC	HS5010 -20 Mf -NA		
		3000	M	100/110V DC	100/110V DC	HS5010 $\square$-30Mf-N		

Notes: *1 Installation system P: Fixed type
X: Draw-out type with cradle for JEM 1425 Class CW
Y: Draw-out type with cradle and shutter for JEM 1425 Class MW, PW
${ }^{* 2}$ Closing system M: Motor-spring stored-energy (High speed reclosing)

■ Types and ratings, 15kV

Rating			Closing system    Closing   system   $* 2$ Operating    voltage		Tripping voltage Shunt-trip(f)	Type	Ordering code	
Volts   (kV)	Breaking current (kA)	Current   (A)						
15	12.5	600	M	100/110V DC	100/110V DC	HS1215 $\square-06 \mathrm{Mf}-\mathrm{N}$		P, X, Y
		1200	M	100/110V DC	100/110V DC	HS1215[-12Mf-N		
		2000	M	100/110V DC	100/110V DC	HS1215 $\square-20 \mathrm{Mf}-\mathrm{N}$		
	16	600	M	100/110V DC	100/110V DC	HS1615■-06Mf-N		P, X, Y
		1200	M	100/110V DC	100/110V DC	HS1615-12Mf-N		
		2000	M	100/110V DC	100/110V DC	HS1615-20Mf-N		
	20	600	M	100/110V DC	100/110V DC	HS2015 $\square$-06Mf-N		P, X, Y
		1200	M	100/110V DC	100/110V DC	HS2015-12Mf-N		
		2000	M	100/110V DC	100/110V DC	HS2015 $-20 \mathrm{Mf}-\mathrm{N}$		
	25	600	M	100/110V DC	100/110V DC	HS2515 -06Mf-N		P, X, Y
		1200	M	100/110V DC	100/110V DC	HS2515■-12Mf-N		
		2000	M	100/110V DC	100/110V DC	HS2515 $\square-20 \mathrm{Mf}-\mathrm{N}$		
	31.5	1200	M	100/110V DC	100/110V DC	HS3115 $\square$-12Mf-N		P, Y
		2000	M	100/110V DC	100/110V DC	HS3115 $\square$-20Mf-N		
		3000	M	100/110V DC	100/110V DC	HS3115 $\square$-30Mf-N		
	40	1200	M	100/110V DC	100/110V DC	HS4015 $\square$-12Mf-N		P, Y
		2000	M	100/110V DC	100/110V DC	HS4015 $\square$-20Mf-N		
		3000	M	100/110V DC	100/110V DC	HS4015 $\square$-30Mf-N		
Notes: ${ }^{* 1}$ Installation system P: Fixed type                     X: Draw-out type with cradle for JEM 1425 Class CW   Y: Draw-out type with cradle and shutter for JEM 1425 Class MW, PW    M: Motor-spring stored-energy (High speed reclosing)								

- Types and ratings, 24kV and 36kV



## H.V. Distribution Equipment <br> Vacuum circuit breakers HS series

Installation and supplied accessories

Vacuum circuit breaker	Cradle	Construction	Accessories
P-fixed mounting type   AF93-314		The VCB shall be fixed to the switchgear by means of 4 bolts. No draw-out system is provided. Wheels are provided to facilitate movement or transport.   Open type cubicle	- Clamp bolts (4 ea. for one unit)   - Closing handle   - Plug-in connector for control circuit   - On-off counter
X-draw-out type   AF93-312		A cradle is provided with a draw-out system. This cradle makes unnecessary the provision of rails or main circuit connector for the switchgear. No mechanical adjustment is required.   JEM 1425   Class CW type metal enclosure	- On-off counter   - Cradle with draw-out system (Main circuit connector, earthing shoe, rail, etc.)   - Plug-in connector   - Closing handle   - Draw-out handle
Y-draw-out type   AF93-313	SF-1055	A cradle is provided with a draw-out system to accept the metal-clad switchgear, which is provided with a shutter. All the necessary parts are provided for this type of breaker. The switchgear is very easy to assemble.   JEM 1425   Class PW or MW type metal-clad switchgear	- On-off counter   - Cradle with draw-out system (Main circuit connector, earthing shoe, rail, shutter, etc.)   - Plug-in connector   - Closing handle   - Draw-out handle

## ■ Optional accessories

Capacitor trip device/VCB-T1A, T2A


KK04-064
This is used when the trip circuit is connected to an AC power supply, and as well as the capacitor,
semiconductors are also built in. It provides a DC output and the trip coil is DC rated.

Vacuum condition tester/VC-1A
See page 12/25.

Type	Description
VCB-T1A	Capacitor trip device 100/110V AC
VCB-T2A	Capacitor trip device 200/220V AC
AF3320R3TXG0542	C-R surge absorber for 3.3 kV
AF6620R3TXG0543	C-R surge absorber for 6.6 kV
VC-1A	Vacuum condition tester 100V AC 50/60Hz

Lifting dolly L-2HS, L-4HS


Lifting dolly

Type	Description	
L-2HNB	$7.2 \mathrm{kV}: 20 / 25 \mathrm{kA}$	
	12kV: 20/25kA	$600,1200 \mathrm{~A}$
L-2HS40E	$7.2 \mathrm{kV}: 31.5 / 40 \mathrm{kA}$	$1200,2000 \mathrm{~A}$
	$12 \mathrm{kV}: 12.5 / 16 / 20 / 25 \mathrm{kA}$	2000 A
L-4HS43N	$7.2 \mathrm{kV}: 31 / 40 \mathrm{kA}$	3000 A
	$12 \mathrm{kV}: 40 / 50 \mathrm{kA}$	$1200,2000 \mathrm{~A}$
	$24 \mathrm{kV}: 40 \mathrm{kA}$	$1200,2000 \mathrm{~A}$

## - Dimensions, mm Draw-out/X type

HS2006X-06Mf-E, HS2506X-06Mf-E


Terminal



Terminal


## H.V. Distribution Equipment <br> Vacuum circuit breakers HS series

## - Dimensions, mm

Draw-out/X type

HS3106X-20Mf-E, HS4006X-20Mf-E


HS4006X-40Mf-N, HS4010X-40Mf-N


HS1210X-06Mf-E, 12Mf-E, HS1610X-06Mf-E, 12Mf-E, HS2010X-06Mf-E, 12Mf-E, HS2510X-06Mf-E, 12Mf-E


# H.V. Distribution Equipment <br> Vacuum circuit breakers HS series 

## ■ Dimensions, mm Draw-out/X type <br> HS3110X-12Mf-E



HS1210X-20Mf-E, HS1610X-20Mf-E, HS2010X-20Mf-E, HS2510X-20Mf-E, HS3110X-20Mf-E


HS1220X-06Mf-K, HS1620X-06Mf-E


Terminal


View from P

## H.V. Distribution Equipment

## Vacuum circuit breakers

## HS series



## Draw-out/Y type

## HS2006Y-06Mf-E, HS2506Y-06Mf-E

Terminal


HS2006Y-12Mf-E, HS2506Y-12Mf-E
Terminal


HS2006Y-20Mf-E, HS2506Y-20Mf-E


HS3106Y-12Mf-E, HS4006Y-12Mf-E


HS3106Y-20Mf-E, HS4006Y-20Mf-E


Fuji Electric FA Components \& Systems Co., Ltd./D \& C Catalog

## H.V. Distribution Equipment

## Vacuum circuit breakers

## HS series

## - Dimensions, mm

Draw-out/Y type

## HS4010Y-12Mf-NA, 20Mf-NA



HS3106Y-30Mf-E, HS4006Y-30Mf-E, HS3110Y-30Mf-N


HS5006Y-12Mf-NA, 20Mf-NA, HS5010Y-12Mf-NA, 20Mf-NA


# H.V. Distribution Equipment <br> Vacuum circuit breakers HS series 

## - Dimensions, mm Draw-out/Y type

HS5006Y-30Mf-N, HS5010Y-30Mf-N


HS1210Y-06Mf-E, 12Mf-E, HS1610Y-06Mf-E, 12Mf-E, HS2010Y-06Mf-E, 12Mf-E HS2510Y-06Mf-E, 12Mf-E


HS1210Y-20Mf-E, HS1610Y-20Mf-E, HS2010Y-20Mf-E, HS2510Y-20Mf-E, HS3110Y-12Mf-E, 20Mf-E


## H.V. Distribution Equipment <br> Vacuum circuit breakers <br> HS series

- Dimensions, mm

Draw-out/Y type
HS4010Y-30Mf-N


HS1220Y-06Mf-K, 12Mf-K, HS1620Y-06Mf-E, 12Mf-E


Terminal


View from $P$

HS2520Y-06Mf-E, 12Mf-E, 20Mf-E


View from $P$

## ■ Dimensions, mm Draw-out/Y type

HS4020Y-12Mf-N, 20Mf-N


HS4020Y-30Mf-N


## H.V. Distribution Equipment

## Vacuum circuit breakers

## HS series

## - Wiring diagrams

- HS2006, HS2506, HS1210, HS1610, HS2010, HS2510, HS1215, HS1615, HS2015, HS2515, HS1220, HS1620

- HS3106-E, HS4006-E, HS3110-E


Terminal arrangement of control circuit receptacle
(A front view of CB mounted receptacles)

1	2	10	RED	2	1	
12	6	8		12	10	
				8	6	
		22	YELLOW			
23	24	25		23	22	
				25	24	
26	27	28	BLUE	27	26	
				29	28	
		35		35	34	
			GREEN	37	36	
36	37	38		39	38	
39	50	51		51	50	
51   HS2006 HS2506    $H 121210$ $H 1616$    $H S 2010$ $H 2510$    HS1220 HS1620			HS 1215HS 2015			
				25		

Terminal arrangement of control circuit receptacle (A front view of CB mounted receptacles)

1	2	10
12	6	8


		22
23	24	25


26	27	28	BLUE
29	34	35	


36	37	38
39	50	51

-HS3106-N, HS4006-N, HS5006, HS6306, HS3110-N, HS4010, HS5010, HS3115, HS4015, HS2520, HS4020, HS2530

(- External terminal of VCB
52 : VCB
52a: NO contact of auxiliary switch
52b : NC contact of auxiliary switch
52 X : Magnetic contactor
$52 Z$ : Anti-pumping relay
52C : Closing coil
52T : Shunt trip coil

Terminal arrangement of control circuit receptacle
(A front view of CB mounted receptacles)


LS $\mathrm{S}_{1}$ : Limit switch (Opens when the closing spring is in the stored condition)
$\mathrm{LS}_{2}$ : Interlocking contact (Only draw-out type)
$\mathrm{LS}_{3}$ : Limit switch (Closes when the closing spring is in the stored condition)
$\mathrm{LS}_{4}$ : Limit switch (Opens when the closing pushbutton is operated)
51R, 51T : Overcurrent relay

## H.V. Distribution Equipment Vacuum circuit breakers Application guide

## - Application guide of surge absorber

When VCBs are interrupted especially under specific
overlapping conditions, chopping surges or surges due to multiple restrikes will cause an escalating effect.
It is therefore recommended that surge absorbers and arresters are fitted to protect motors or transformers.

Voltage   Load	3.3 kV	6.6 kV	11kV	22kV
Motor	C-R   suppressor	C-R   suppressor	C-R	Contact FUJI for further imformation
Molded transformer ${ }^{\star 1}$	$\begin{gathered} -^{* 2},{ }^{* 3} \\ (\mathrm{BIL} \geq 45 \mathrm{kV}) \end{gathered}$	$\begin{gathered} -* 2,{ }^{* 3} \\ (\mathrm{BIL} \geq 60 \mathrm{kV}) \end{gathered}$	$\begin{gathered} \bullet^{* 3} \\ \text { Arrester } \\ (\mathrm{BIL} \geq 60 \mathrm{kV}) \end{gathered}$	$\begin{gathered} 0^{* 3} \\ \text { Arrester } \\ (\mathrm{BIL} \geq 95 \mathrm{kV}) \end{gathered}$
Oil-immersed transformer*1	$\begin{gathered} -* 2_{*}^{* 3} \\ (\mathrm{BIL} \stackrel{45 \mathrm{kV})}{ } \end{gathered}$	$\begin{gathered} \left.-* 2, * 3_{*}^{(\mathrm{BIL}} \geq 60 \mathrm{kV}\right) \\ \hline \end{gathered}$	$\begin{gathered} -^{* 2},{ }^{* 3} \\ (\mathrm{BIL} \geq 90 \mathrm{kV}) \end{gathered}$	$\begin{gathered} \bullet * 3 \\ (\mathrm{BIL} \geq 150 \mathrm{kV}) \end{gathered}$

Notes: - : Suppression device required - : Suppression device not required
*1 The withstand voltages (impulse) of transformer must exceed the values listed above.
*2 When breaking a magnetizing inrush current, it is recommended that a suppression device will be used.
*3 Semiconductor device must be provided with suitable suppression devices when a semiconductor is installed on the load side of transformer.

- C-R type surge absorber

Type	Rated   voltage	Max. operating   voltage	Frequency
AF3320R3TXG0542	$\frac{3.3 \mathrm{kV}}{\sqrt{3}}$	$115 \%$ of	$50 / 60 \mathrm{~Hz}$
AF6620R3TXG0543 $\frac{6.6 \mathrm{kV}}{\sqrt{3}}$ rated voltage	$50 / 60 \mathrm{~Hz}$		

For 11 kV : Contact FUJI.
Dimensions, mm/Surge absorber


- Arrester/GLI

Type	GLI-3G	GLI-6G
Rated voltage	4.2 kV	8.4 kV
Nominal discharge current	2.5 kA	2.5 kA
Max. clamping voltage	15 kV or less	30 kV or less
Discharge current withstand   capacity	$30 \mathrm{kA}, 2$ times	$30 \mathrm{kA}, 2$ times

## H.V. Distribution Equipment Vacuum circuit breakers Auto. V

## Auto.V <br> - Description

7.2/3.6kV, 400A, 600A, 8kA, 12.5kA

FUJI Auto. Vs are vacuum circuit breakers which incorporate a built-in solid-state OCR and CT.
As they do not require to have a CT installed inside the switchgear cubicle or an OCR fixed to the front panel, space is saved in the cubicle and wiring and installation are simplified.
A system protection is easily arranged using Auto. Vs with primary circuit breaker and also a protective coordination with low voltage MCCBs. The CT is a compactly built toroidal type and it is fitted to the upper part of the VCB. Its overcurrent withstanding value is as large as $12.5 \mathrm{kA}, 1 \mathrm{sec}$.

## - Features

- Built-in solid-state OCR and CT are provided
- System protective coordination is easily arranged using the VCBs.
- Compactly assembled, so saving space
- The built-in CT has a large overcurrent withstand value of 12.5 kA .
- The setting range of the rated current is 24 A to 320 A .

- Applicable to the receiving and distribution facilities of 6 kV , 170 to 2000kVA.
- Specifications

Type				$\begin{aligned} & \text { HA08 } \square-\mathrm{H6} \\ & \text { HA08 } \square-\mathrm{H} 7 \end{aligned}$	$\begin{aligned} & \text { HA12 } \square-\mathrm{H} 6 \\ & \text { HA12 } \square-\mathrm{H} 7 \end{aligned}$	$\begin{aligned} & \text { HA08 } \square-A 6 \\ & \text { HA08 } \square-A 7 \end{aligned}$	$\begin{aligned} & \text { HA12 } \square-A 6 \\ & \text { HA12 } \square-A 7 \end{aligned}$
Closing system				Manual-spring		Motor-spring	
Installation $\square$				Fixed: B, C, P		Fixed: B, C, P	
Rated voltage			(kV)	3.6/7.2		3.6/7.2	
Rated current			(A)	400	600	400	600
Rated frequency			(Hz)	50/60		50/60	
Rated breaking capacity (kA)				8   50MVA at 3.6 kV 100MVA at 7.2 kV	12.5   80MVA at 3.6 kV 160MVA at 7.2 kV	8   50MVA at 3.6 kV   100MVA at 7.2 kV	12.5 80MVA at 3.6 kV 160MVA at 7.2 kV
Rated making current, peak value			(kA)	  20 31.5		20 31.5	
Rated closing time			(s)	-		0.03	
Rated short-time current, 1 second			(kA)	8 ( 12.5		8	12.5
Insulation level				Dielectric: 22 kV , 1 minute Impulse ( $1.2 \times 50 \mu \mathrm{~s}$ ): 60 kV			
Rated breaking time				3 -cycle		3-cycle	
Opening time			(s)	0.03		0.03	
Operating duty				$0-1 \mathrm{~min}$. $-\mathrm{CO}-3 \mathrm{~min}$. - CO or $\mathrm{CO}-15 \mathrm{sec} .-\mathrm{CO}$			
OCR	Rated operating current setting value *1		(A)	24-30-36-42-48-60-75-90-105-120-160-200-240-280-320			
	Instantaneous trip current			$5,7.5,10,12.5,15$ times the rated operating current			
	Operating current	Inverse time element Instantaneous element		Within $\pm 10 \%$ of each setting current Within $\pm 15 \%$ of each setting current			
	Operating time	Inverse time element Instantaneous element		Time setting 10: Input $300 \% 10 \mathrm{sec}$. Input 700\% 1.6 sec.   Time setting $6:$ Input $300 \% 6$ sec. $\pm 17 \%$ Input $700 \% 1 \mathrm{sec} . \pm 12 \%$   Less than 0.05 sec . at $200 \%$ of setting current			
	Inertia characteristic			$90 \%$ of the operating time obtained when $1,000 \%$ of the setting value input at minimum current setting value and time setting 10 .			
Durability		Mechanical (operations) Electrical (operations)		$\begin{array}{\|l\|} \hline 10,000 \\ 10,000 \end{array}$			
No. of operations (operations/hour)				60			
Applicable capacitor capacity *2			(kVA)	3,000	5,000	3,000	5,000
Auxiliary contact				$2 \mathrm{NO}+2 \mathrm{NC}$ ( $5 \mathrm{NO}+5 \mathrm{NC}$ available on request)			
Alarm contact				1NO 100/110V AC 2.0A, 200/220V AC 1.0A, 100/110V DC 0.3A			
Mass (kg		Fixed		25	28	27	30
Standard				H.V. circuit breaker: JIS C 4603 (1990) AC circuit breaker: JEC2300 (1998) Overcurrent relays for H. V. power receiving: JIS C 4602 (1986)			

Note: *1 Operating current setting value 8 to 80 A is also available.
*2 Maximum values when the VCB is used with a $6 \%$ reactor connected in a 6.6 kV AC circuit. Halve these values for a 3.3 kV AC circuit.

## H.V. Distribution Equipment <br> Vacuum circuit breakers <br> Auto. V

## Design features

The four dials facilitate the setting of the overcurrent protection as followed:

Operating current and time setting of inrush currents due to either transformers or capacitors and a coordination can be arranged with primary circuit breakers. It can be set to operate at between 5 and 15 times its operating current.
range for Auto. V

## - Operating time

No. of steps: 16 (T=50 to $\mathrm{T}=0.5$ )
The operating time setting dial of the solid-state OCR's corresponds with the time lever of the induction type OCR's. It has 16 steps, from
$\mathrm{T}=50$ to $\mathrm{T}=0.5$.

- Instantaneous trip current

Trip current: 5 to 15 times the operating current.
This device is designed to instantaneously trip when a large current flows due to a short-circuit fault. It can be set so it does not operate in the face

## - Rated operating current

Rated current range: 24 to 320A
(8 to 80A)
No. of steps: 15
Steps from 24A to 320A can be set by the two dials-CT's primary current dial and multiplying factor dial of primary current. These breakers are most suitable for receiving and distributing facilities with capacities from 6 kV , 170 to 2000 kVA . Since the rating for the primary current can be freely changed expenses for changing the CT ratio can be saved when expanding electrical facilities.

Rated operating current setting dials
The combination of these two dials permits the setting of 15 possible combinations.
(1) Rated operating current value (A)

Primary current   setting dial	Multiplying factor dial					
	0.8	1.0	1.2	1.4	1.6	
Standard	30 A	24	30	36	42	48
	75 A	60	75	90	105	120
	200 A	160	200	240	280	320
	TEST	Set at this point when   carrying out the operating   test of OCR's				

## (2) Terminals for operating tests

When carrying out the operating test, set the rated operating current setting dial at the TEST position and apply the test current between the C1-com and C2-com terminals.

## 3 Instantaneous tripping current setting dial

This can be set to 5 to 15 times the rated operating current value. When set at the LOCK position the instantaneous function stops.

## H.V. Distribution Equipment Vacuum circuit breakers Auto. V

## - Design features

- Auto. V improves system dependability
FUJI solid-state type OCR's are provided with the ideal inverse time characteristics instead of the conventional electronic type linear characteristics.
In the case of the conventional induction type OCR's their long inverse time zone in characteristic curves do not extend smoothly, and so they do not meet the requirements of the operating characteristics of L . V. breakers thus making it difficult to arrange a coordination. The operating time of Auto. V's at $300 \%$ current has been greatly improved to 10 sec . as against 2 to 3 sec for conventional OCR's. The function to extend the operating time by five times, an option of the previous Auto. V is included in the new Auto. V as a standard feature.


## - Inertia characteristics exceed 90\%

The inertia characteristics correspond with the "non-operating characteristics (permissible)".
When carrying out the coordination with the low voltage MCCB's, it is necessary to consider the "non-operating characteristics" and "coordination" in which the inertia characteristics are taken into consideration.
In the case of the induction type OCR's the inertia characteristics normaly exceed $60 \%$, thus make it difficult to establish coordination with low voltage MCCB's. On the other hand in the electronic type OCR's their inertia characteristics exceed $90 \%$, giving them ideal operating characteristics.

- The overcurrent withstanding value of the CT is 12.5 kA
The CT built in the Auto. V is extremely small in size but its toroidal design permits it to withstand overcurrents having values as large as 12.5 kA for 1 sec .

CT with large overcurrent constant The internal CT's overcurrent constant of 20 or more was achieved by combining a CT with a very low activation power OCR. When using a CT in combination with a protective relay, the CT's overcurrent constant must be large enough for the overcurrent. To determine compatibility, overall OCR operation must be checked from the combined CT and OCR characteristics as shown in the figure at right.

The operating characteristics of Auto. V and induction type OCR (FUJI CH1-53 type)


The inertia characteristics of Auto. V and induction type OCR


CT overcurrent constant and OCR
operation characteristics


## ■ Operating characteristics of

 overcurrent relaysThe curves indicate the time-current characteristics of OCR's. These characteristics meet the requirements of JIS C4602 "Overcurrent Relays for H. V. Power Receiving"

Note: For practical dial setting method or the test method of solid state OCR's please contact FUJI.

## Note:

* Overcurrent constant

In CT the secondary current increases proportionally o the increase of the primary current.
When the value exceeds a certain value a saturation akes place due to magnetic saturation. The overcurrent constant(n) indicates the value obtained by dividing, the current value at the point where the error reaches $10 \%$, by the rated current.


JEC190 (1977) instrument transformer for protective relay is stipulated as " $n>5, n>10$ and $n>20$ ". It is necessary that they have an adequately large vercurrent constant when incorporated with protective relays.
$\square$ Types and ratings

Ratings	Installation	Closing system System type	Operating voltage	$\begin{array}{\|l} \hline \text { Shunt trip } \\ \text { 100/110V AC } \\ \text { Type } \\ \hline \end{array}$	Ordering code	$\begin{aligned} & 100 / 110 \mathrm{~V} \text { DC } \\ & \text { Type } \end{aligned}$	Ordering code
Voltage$3.6 / 7.2 \mathrm{kV}$	Fixed: B Switchboard use	Manual-spring		HA08B-H6F	HA31BH6-400F	HA08B-H7F	HA31BH7-400F
		Motor-spring Instantaneous	100/110V AC/DC 200/220V AC/DC 48 V DC   21/24V DC	HA08B-A6F HA08B-B6F HA08B-C6F HA08B-D6F	HA31BA6-400F HA31BB6-400F HA31BC6-400F HA31BD6-400F	HA08B-A7F HA08B-B7F HA08B-C7F HA08B-D7F	HA31BA7-400F HA31BB7-400F HA31BC7-400F HA31BD7-400F
Breaking current 8.0kA	Fixed: C Cubicle use	Manual-spring		HA08C-H6F	HA31CH6-400F	HA08C-H7F	HA31CH7-400F
		Motor-spring Instantaneous	$\begin{aligned} & 100 / 110 \mathrm{VAC} / \mathrm{DC} \\ & 200 / 220 \mathrm{~V} \text { AC/DC } \\ & 48 \mathrm{~V} \text { DC } \\ & 21 / 24 \mathrm{~V} \text { DC } \end{aligned}$	HA08C-A6F HA08C-B6F HA08C-C6F HA08C-D6F	НАЗ1CA6-400F HA31CB6-400F НАЗ1CC6-400F HA31CD6-400F	HA08C-A7F HA08C-B7F HA08C-C7F HA08C-D7F	HA31CA7-400F HA31CB7-400F HA31CC7-400F HA31CD7-400F
Rated current 400A	Fixed: P Portable type	Manual-spring		HA08P-H6F	HA31PH6-400F	HA08P-H7F	HA31PH7-400F
		Motor-spring Instantaneous	100/110V AC/DC 200/220V AC/DC 48V DC   21/24V DC	HA08P-A6F HA08P-B6F HA08P-C6F HA08P-D6F	HA31PA6-400F HA31PB6-400F HA31PC6-400F HA31PD6-400F	HA08P-A7F HA08P-B7F HA08P-C7F HA08P-D7F	HA31PA7-400F HA31PB7-400F HA31PC7-400F HA31PD7-400F
Voltage   3.6/7.2kV	Fixed: B   Switchboard use	Manual-spring		HA12B-H6F	HA32BH6-600F	HA12B-H7F	HA32BH7-600F
		Motor-spring Instantaneous	100/110V AC/DC 200/220V AC/DC 48 V DC   21/24V DC	HA12B-A6F HA12B-B6F HA12B-C6F HA12B-D6F	HA32BA6-600F HA32BB6-600F HA32BC6-600F HA32BD6-600F	HA12B-A7F HA12B-B7F HA12B-C7F HA12B-D7F	HA32BA7-600F HA32BB7-600F HA32BC7-600F HA32BD7-600F
Breaking current 12.5 kA	Fixed: C Cubicle use	Manual-spring		HA12C-H6F	HA32CH6-600F	HA12C-H7F	HA32CH7-600F
		Motor-spring Instantaneous	100/110V AC/DC 200/220V AC/DC 48V DC   21/24V DC	HA12C-A6F HA12C-B6F HA12C-C6F HA12C-D6F	HA32CA6-600F HA32CB6-600F НАЗ2CC6-600F HA32CD6-600F	HA12C-A7F HA12C-B7F HA12C-C7F HA12C-D7F	HA32CA7-600F HA32CB7-600F HA32CC7-600F HA32CD7-600F
Rated current 600A	Fixed: P Portable type	Manual-spring		HA12P-H6F	HA32PH6-600F	HA12P-H7F	HA32PH7-600F
		Motor-spring Instantaneous	$\begin{aligned} & 100 / 110 \mathrm{VAC} / \mathrm{DC} \\ & 200 / 220 \mathrm{~V} / \mathrm{DC} \\ & 48 \mathrm{~V} \text { DC } \\ & 21 / 24 \mathrm{~V} \text { DC } \\ & \hline \end{aligned}$	HA12P-A6F HA12P-B6F HA12P-C6F HA12P-D6F	HA32PA6-600F HA32PB6-600F HA32PC6-600F HA32PD6-600F	HA12P-A7F HA12P-B7F HA12P-C7F HA12P-D7F	HA32PA7-600F HA32PB7-600F HA32PC7-600F HA32PD7-600F

## H.V. Distribution Equipment <br> Vacuum circuit breakers <br> New-Auto. V

## New-Auto.V

## - Description

The New-Auto.V is a circuit breaker that consists of a standard MULTI.VCB provided with a CT (current transformer), and incorporates a multiple function protectors and controllers to prevent equipment from overcurrent and other factors, thus saving energy and reducing installation man-hour.

- Multiple function protectors and controllers offers versatile features such as ground-fault directional, ground-fault overvoltage, undervoltage, and overvoltage protective functions in addition to overcurrent protection. It also includes measurement functions for a variety of items, such as current, voltage, power, power-factor, frequency, and zero-phase voltage values.
- Highly reliable overcurrent protection
- Withstand overcurrent of CT: 12.5kA
- Overcurrent constant of CT: $n>20$

■ Specifications


Note: * ${ }^{1}$ Maximum values when the VCB is used with a $6 \%$ reactor connected in a 6.6 kV AC circuit.
Halve these values for a 3.3 kV AC circuit.

## H.V. Distribution Equipment Vacuum circuit breakers New-Auto. V

Item				Specification
General specification	Control power supply [V]			100/110DC (80 to 143DC) or 100AC (85 to 132AC)
	Power consumption (main unit) [W]			15W max.
	Rated frequency [Hz]			50/60 (settings selectable)
	Rated current		CT primary side [A]	30/100/300 AC (selectable)
			CT secondary side [A]	0.1 AC
	Rated zero-phase current		ZCT [mA]	200/0.2 AC *1
	Insulation resistance			$10 \mathrm{M} \Omega$ between all electric circuits and ground
	Vibration resistance			$1.96 \mathrm{~m} / \mathrm{s}^{2}, 16.7 \mathrm{~Hz}, 0.4 \mathrm{~mm}$ double amplitude in three directions for 10 minutes each
	Shock resistance			$300 \mathrm{~m} / \mathrm{s}^{2}$ three times each in three directions
	Dielectric strength			2kV AC between all charged parts and ground excluding MN signal line, RS-485 signal line, and transducer output terminal.*2
	Noise immunity			Damped vibration waveform at 1 to 1.5 MHz with peak voltage of 2.5 to 3 kV continuously applied for 2 seconds Impulse noise in rectangular waveform ( $1 \mathrm{~ns} / 1 \mu \mathrm{~s}$ ) at peak voltage of 1.5 kV applied for 10 minutes   Radiowave freguency band: $10 \mathrm{~V} / \mathrm{m}$ on $140 \mathrm{MHz}, 430 \mathrm{MHz}$, and 900 MHz bands Cellular phone $(800 \mathrm{MHz} / 1.5 \mathrm{GHz}$ at 0.8 W$)$ or $\mathrm{PHS}(1.9 \mathrm{GHz} 10 \mathrm{~mW})$ in close contact
	Static electric noise			In contact with metal part: $\pm 6 \mathrm{kV}$ Panel surface (not in contact with no metal parts): $\pm 8 \mathrm{kV}$
	Lightning impulse			Between all electric circuits and ground (excluding MN signal line, RS485 signal line, and transducer output terminal)   $4.5 \mathrm{kV}, 1.2 \times 50 \mu \mathrm{~s}$, three times each on positive and negative sides
	Ambient humidity			$10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ (with no condensation or icing)
	Storage temperature			$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (with no condensation or icing)
	Humidity			20\% to $90 \%$ (on daily average with no condensation)
	Operating atmosphere			Free from corrosive gas and excessive dust
	Grounding			Ground at a resistance of $100 \Omega$ or less
	Mass			1.4 kg
	Permissible momentary power interruption time			20 ms (continuous operation) with display turned off The protective relay is, however, operable for 200 ms after the power is interrupted.*3   (Display turns off, communication stops, and fault output turns on)
Protective function	Overcurrent protection	Rated operation current (51) setting range		15 to 390A
	Instantaneous overcurrent protection 50 (INST)	Rated trip current	Setting range	(1 to 20) $\times$ rated current (in 0.2 increments), LOCK
			Operating value	$\pm 15 \%$ max. of each setting current
		Operating time	Operating value	0.05 s max. at 200\% of setting current
	Short-time overcurrent protection 51DT	Rated trip current	Setting range	(1 to 20) $\times$ rated current (in 0.2 increments), LOCK
			Operating value	$\pm 10 \%$ max. of each setting current
		Operating time	Setting range	0 to 5s (at 0.05 increments)
			Operating value	$\pm 17 \%$ max. of $300 \%$ of setting value, $\pm 12 \%$ max. of $700 \%$ of setting value (Lower limit: $\pm 50 \mathrm{~ms}$ )
	Time-lag overcurrent protection 51	Rated trip current	Setting range	50 to 130\% of rated current (at 10\% increments), LOCK
			Operating value	$\pm 10 \%$ max. of each setting current
		Operating time	Time-magnification (lever) setting range	(0.5 to 20) $\times$ (in 0.1 increments), (20 to 100) $\times$ (in 1 increments)
			Operating value	$\pm 17 \%$ max. of $300 \%$ of setting value,   $\pm 12 \%$ max. of $700 \%$ of setting value (Lower limit: $\pm 100 \mathrm{~ms}$ )
	Ground fault protection 67DG and 51G	Zero-phase current Zero-phase voltage	Setting range	0.1 to 1.0A (at 0.05A increments), LOCK
			Operating value	$\pm 10 \%$ max. of setting value
			Setting range	2.5\% to $15 \%$ of rated voltage (at 2.5\% increments)
			Operating value	$\pm 25 \%$ max. of setting value
		Phase	Max. sensitivity	30, 45, $60{ }^{\circ}$
			Operating angle range	Max. sensitivity phase: $\pm 80^{\circ}$
			Operating angle tolerance	$\pm 15 \%$
		Operating time	Setting range	0.1 to 3s (at 0.05s increments), 3 to 120s (at 1s increments)
			Operating value	$\pm 5 \%$ max. of setting value (Lower limit: $\pm 50 \mathrm{~ms}$ )

## H.V. Distribution Equipment Vacuum circuit breakers New-Auto. V

Protective function	Overvoltage protection 59(OV)	Voltage	Setting range	110 to 150V (at 5V increments), LOCK		
			Operating value	$\pm 5 \%$ max. of setting value		
		Operating time	Setting range	$0.1,0.2$ to 2 s (at 0.2s increments), 2 to 10 s (at 1 s increments)		
			Operating value	$\pm 5 \%$ max. of setting value (Lower limit: $\pm 50 \mathrm{~ms}$ )		
	Undervoltage protection 27 (UV)	Voltage	Setting range	20 to 100V (at 5V increments), LOCK		
			Operating value	Setting value of 90 V min.: $\pm 5 \%$   Setting value of 85 V max.: $\pm[\{2.3+(110 \mathrm{~V} /$ voltage setting value) x 0.16$\} \mathrm{x} 2] \%$		
		Operating time	Setting range	0.1, 0.2 to 2s (at 0.2s increments), 2 to 10 s (at 1 s increments)		
			Operating value	$\pm 5 \%$ max. of setting value (Lower limit: $\pm 50 \mathrm{~ms}$ )		
Prealarm	OvercurrentOCA	Voltage	Setting range	10\% to 100\% of rated current (at 5\% increments), LOCK		
			Operating value	$\pm 10 \%$ max. of setting value		
		Operating time	Setting range	10 to 200s (at 10s increments)		
			Operating value	$\pm 5 \%$ max. of setting value		
	Leakage	Voltage	Setting range	50\%, 60\%, 70\%, and 80\% of 67DG or 51G operating current setting value, Lock		
	current		Operating value	$\pm 10 \%$ max. of setting value (Lower limit: $\pm 20 \mathrm{~mA}$ )		
	OCGA	Operating time	Setting range	10 to 200s (at 10s intervals)		
			Operating value	$\pm 5 \%$ max. of setting value		
External I/O specifications	Input circuit	Fixed, 5 points		CT primary rated current (30A/100A/300A): 3 points, CT test position: 1 point, trip output lock: 1 point	100V DC (143V max.)/100V AC (132V max.) common use DC ON voltage: 40 V min, 70V max.   AC ON voltage: 40 V min, 70 V max.	
		General-purpose, 3 points		External making, external breaking and external reset of each one point is default.		
		Others, 2 points		Trip coil (TC) disconnection monitoring, 52a contact: each one contact		
	Output circuit	Input, 1 point		Making earrent: 15 A (110V DC )   Permissible continuous current: 4A		
		Off and trip, 1 point				
		Alarm output, 8 points		Permissible continuous current: 4A		
		Device failure, 1 point		Current made or broken: 0.2 A (110V DC inductive load, L/R=15ms) Permissible continuous current: 1A		
Metering and display	Current, demand current and demand max. current			$0,0.4 \%$ to CT rating and to CT rating $\times 1.3$ Fault current of $2000 \%$ max. can be displayed		
specifications	Zero-phase current and zero-phase current history max. value		200/0.2mA	ZCT primary current: 0.05 to 1.0 A *1 Fault current of 4A max. can be displayed		
	Zero-phase voltage and zero-phase voltage history max. value			1.5\% to $50 \%$ *4		
	Voltage			5 to 150V on VT secondary side		
	Frequency			45 to $55 \mathrm{~Hz}(50 \mathrm{~Hz})$ and 55 to $65 \mathrm{~Hz}(60 \mathrm{~Hz})$		
	Power-factor			Lead 0 to 1.0 to Lag 0		
	Active power, reactive power, demand power and max. demand power			$0,0.4 \%$ to ( $\sqrt{3} \times$ rated voltage $\times 1.3$ In $\times$ power-factor 1.0 ) \% (In: CT primary rated current)		
	Active energy and reactive energy			JIS C 1216 (meter with transformer), equivalent to table 4 normal class		
	History data			Number of protective operation times: 0 to 9999 Operating hours: 0 to $9999 \times 100 \mathrm{hr}$ Number of switching times: 0 to $9999 \times 10$ times		

Notes *1 When using ZCT, FUJI's dedicated product ZCT- $\square$ is recommended. For details, please contact FUJI.
*2 Do not apply 2 kV between lines.
${ }^{* 3}$ When you use AC power as control power supply, and 27 (UV) function, and you require that the operating time setting at power failure be operated more than 2 s , the use of a UPS or AC power supply UM2P-A1 is recommended (sold separately).
*4 When you use zero-phase potential input device, use FUJI's dedicated ZPD-1.

## H.V. Distribution Equipment Vacuum circuit breakers New-Auto. V

■ Multiple function protectors and controllers offers versatile features.

- A host of protective functions
- Provided with ground-fault directional, ground-fault overvoltage, undervoltage, and overvoltage protective functions in addition to overcurrent protection
- Allows precise settings for relay operation characteristics, to ensure easy protective coordination.
- Additional measurement functions
- Includes measurement functions for a variety of items, such as current, voltage, power, power-factor, frequency, and zero-phase voltage values.
- Equipped with transducer and communications functions.
- The transducer function (4 channels) enables the use of analog meters.
- The communications function (RS-485) enables status and other monitoring items.

■ Wide-range CT supports equipment across a wide capacity range

- Range of operating current settings for overcurrent protection: 15 to 390A
- Covers an equipment capacity range of 170 to $4,400 \mathrm{kVA}$.


## Rated operating current (A)

CT rating	$50 \%$	$60 \%$	$70 \%$	$80 \%$	$90 \%$	$100 \%$	$110 \%$	$120 \%$	$130 \%$
30 A	15 A	18 A	21 A	24 A	27 A	30 A	33 A	36 A	39 A
100 A	50 A	60 A	70 A	80 A	90 A	100 A	110 A	120 A	130 A
300 A	150 A	180 A	210 A	240 A	270 A	300 A	330 A	360 A	390 A

- Instantaneous operating current: 1 x to 20 x CT rated current at $0.2 x$ increments
- Time-lag time-magnification: Setting between 0.5 and 100
- Greatly simplifies main circuit connections
- The compact, built-in CT eliminates the need for CT space or CT installation work on distribution boards.


Multiple function protectors and controllers


## $\square$ Types and ratings

Ratings	Installation	Closing system   Closing system	Operating   voltage	Trip system

## H.V. Distribution Equipment <br> Vacuum circuit breakers <br> Auto. V/New-Auto.V

■ Closing system

System	Specification   Voltage	Motor current	Coil current	Remarks
Motor-spring	A	$100 / 10 \mathrm{~V} \mathrm{AC/DC}$	0.6 A	4 A
	B	$200 / 220 \mathrm{~V}$ AC/DC	0.5 A	• Use a VT with a capacity of at least 50VA.
	C	48 V DC	1.5 A	- Use a 3A fuse to protect the control circuit
	D	$21 / 24 \mathrm{~V}$ DC	1.5 A	5 A

Note: The New-Auto.V comes only with motor-spring A.

- Tripping system

	System		Specification	
Auto.V ${ }^{* 1, * 2}$	Shunt trip	6 7	$\begin{aligned} & \text { 100/110V AC, } \\ & \text { 100/110V DC, } \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{VA} \\ & 3.4 \mathrm{~A} \end{aligned}$
New-   Auto.V *2	Shunt trip	8	100/110V DC Operated by with multiple controller	3.4A nal communication action protectors and


■ Auxiliary contact		
Contact arrangement	Specification	Remark
2NO + 2NC	$100 / 200 \mathrm{~V}$ AC, 10A	5NO + 5NC contacts
standard provided	$100 / 200 \mathrm{~V}$ DC, 5/3A	are available on
request		
(Fixed type)		(Fixed type)
5NO + 5NC		
standard provided		

Note: $\quad{ }^{* 1}$ To use AC to trip the Auto. V, use a capacitor trip device in combination with the trip system.
${ }^{* 2}$ In the case of shunt tripping with AC power supply, use the capacitor shunt trip power supply in combination. For details, refer to the information on the accessories sold separately.

- Alarm contact

Contact arrangement	Specification
1NO	$100 / 110 \mathrm{~V} \mathrm{AC}, \mathrm{2.0A}$
standard provided (Auto.V)	$200 / 220 \mathrm{~V}$ AC, 1.0A
	$100 / 110 \mathrm{~V}$ DC, 0.3A (time constant: 7ms)

- Type number nomenclature


Vacuum interrupter used
Blank: Standard level vacuum interrupter
L: Low-level-surge vacuum interrupter

## Installation

B: Fixed, switchboard use
C: Fixed, cubicle use
P: Fixed, portable typ
Rated operating current
F: 24 to 320A (standard)
S: 8 to 80 A

P: Fixed, portable type
Tripping system
6: Shunt trip 100/110V AC
7: Shunt trip 100/110V DC
Closing system
H: Manual-spring
A: Motor-spring, Instantaneous closing 100/110V AC/DC
B: Motor-spring, Instantaneous closing 200/220V AC/DC
C: Motor-spring, Instantaneous closing 48V DC
D: Motor-spring, Instantaneous closing 21/24V DC

## - New-Auto.V



## Panel lead wire

Blank: With panel lead wire
K: Plug only
Position switch
Blank: With no position switch
S1: With run position and test position, both with SPDT contacts
Vacuum interrupter used
Blank: Standard level vacuum interrupter
L: Low-level-surge vacuum interrupter
Tripping system
8: Multiple function protectors and controllers provided with built-in CT Shunt trip 100/110V DC
Closing system
A: Motor-spring, Instantaneous closing 100/110V AC/DC

## H.V. Distribution Equipment <br> Vacuum circuit breakers Auto. V/New-Auto.V

■ Installation and accessories

	Photo	Installation system	Description	Supplied accessories	Optional accessories
Auto.V			- Fixed type   - Open-type switchboard, indoor use   - Manual-spring handle or motorspring   - H.V. main terminals are positioned at the top of the VCB. This facilitates replacement of VCB	- Insulation tube for main terminal   - Manual handle for motor-spring type	- Supporter   - Capacitor trip device   - Vacuum condition tester   - Surge absorber
		Fixed: C   Auto V   Panel	- Fixed type   - Open-type cubicle use   - Manual-spring handle or motorspring   - H.V. main terminals is located at the top of VCB.   This facilitates replacement of VCB.	- Insulation tube for main terminal   - Manual handle for motor-spring type	- Supporter   - Capacitor trip device   - Vacuum condition tester   - Surge absorber
	AF92-64	Fixed: $P$	- Fixed type   - Open-type, portable type   - Manual-spring handle or motorspring   - H.V. main terminals is located at the back of VCB.   This facilitates replacement of VCB.	- Manual handle for motor-spring type	- Capacitor trip device   - Vacuum condition tester   - Surge absorber
New-Auto.V		Draw-out with cradle: X	- Draw-out type   - Class CW type metal enclosure/ indoor use   - Motor-spring   - Cradle is provided to facilitate assembly and adjustment of switchgear.   - Interlock system and grounding device is provided.	- Manual handle for motor-spring type   - Draw-out handle   - Connector provided with external lead wire   - Lead wire for digital multi-function relay   - Test jumper wire for digital multi-function relay	- Draw-out extension rail   - Position indicating switch   - Capacitor trip device   - Vacuum condition tester   - Surge absorber   - Lifter   - Testing jumper   - Connector with external lead wire
		Draw-out with cradle and shutter: Y	- Draw-out type   - Class MW, PW type metal enclosure/indoor use   - Motor-spring   - Cradle with shutter is provided to facilitate assembly and adjustme nt of switchgear.   - Interlock system and grounding device is provided.	- Manual handle for motor-spring type   - Draw-out handle   - Connector provided with external lead wire   - Lead wire for digital multi-function relay   - Test jumper wire for digital multi-function relay	- Draw-out extension rail   - Position indicating switch   - Capacitor trip device   - Vacuum condition tester   - Surge absorber   - Lifter   - Testing jumper   - Connector with external lead wire
		Draw-out with cradle: U	- Draw-out type   - Class CW type metal enclosure/ indoor use   - Motor-spring   - Cradle with shutter is provided to facilitate assembly and adjustme nt of switchgear.   - Interlock system and grounding device is provided.	- Manual handle for motor-spring type   - Draw-out handle   - Connector provided with external lead wire   - Lead wire for digital multi-function relay   - Test jumper wire for digital multi-function relay	- Draw-out extension rail   - Position indicating switch   - Capacitor trip device   - Vacuum condition tester   - Surge absorber   - Lifter   - Testing jumper   - Connector with external ead wire

## H.V. Distribution Equipment

## Vacuum circuit breakers

## Auto. V/New-Auto.V



Optional accessories

- Supporter

Supporter kit for stabilizing the back of fixed type B, C Auto. V on the floor.

Type: C


- Vacuum condition tester VC-1A
For further information see page 12/25.


SH-27

- Capacitor trip device

VCB-T1A, T2A, VCB-T1PA, T2PA
These are used when the trip circuit is connected to AC power supply.

Type	VCB-T1A   VCB-T1PA	VCB-T2A   VCB-T2PA
Rated input   voltage	$100 / 110 \mathrm{VAC}$	$200 / 220 \mathrm{~V} \mathrm{AC}$
Shunt trip coil volt	$100 / 110 \mathrm{~V}$ DC	$200 / 220 \mathrm{~V}$ DC

## Wiring diagram



- Draw-out extension rail (HZ2AE)

Used with draw-out type (X, Y, U).
Use of an extension rail makes daily checking easier because the VCB can be pulled out of the panel.
Double stack types do not require lifters or chain blocks.


KK03-079

- C-R type surge absorber AF3320R3TXG0542
AF6620R3TXG0543
For further information see page 12/25.
- Testing jumper (HZ2AG)

Use to test remote ON/OFF operation of a VCB.


Surface mounting
VCB-T1A, T2A


Name
r1: Charging resistor
r2: Discharge resistor
r3: Series resistor
Si: Silicon rectifier diode
PL: Pilot lamp
Flush mounting VCB-T1PA, T2PA

SW: Discharge switch
Z: Surge absorber

- Position indicating switch (HZ2AD)

Switch for indicating the service positions and test positions of draw-out (X, Y, U). Used for interlocking to other devices attached to the cradle for draw-out type.


SG 1075

- Lifter

C: Electrolytic capacitor


■ Optional accessories

- AC power supply unit (for New-Auto.V)

Type		UM2P-A1
Rated input voltage		100/110V AC (Allowable variation: 85 to 132V)
Rated output	Control power of multiple functions protectors and controllers	100/110V DC 0.15A
	Power supply of capacitor trip device	Rated charge voltage: 140V DC ( $\mathrm{C}=1500 \mu \mathrm{~F}$ )
Power failure compensation time	Control power of multiple functions protectors and controllers	1s
	Power supply of capacitor trip device	When power failure occurs at 60V AC, the charge voltage is 75DC or higher after the elapse of 30 s .
Operating temperature range		-10 to $+60^{\circ} \mathrm{C}$ (no icing or no condensation)
Insulation resistance		Between all electrical circuits and ground: $10 \mathrm{M} \Omega$ (500V DC megger)
Withstand voltage		Between all electrical circuits and ground: 2000V AC for 1min
Lightning impulse		Between all electrical circuits and ground: 4500V 1.2/50 $\mu \mathrm{s}$
Mass		1.5 kg
Notes: The power failure compensation time of this AC connect an external capacitor (not supplied) tog		r supply unit is 1s. If you use the UV (undervoltage) function with the operation between this unit's terminals 5 and 6 , by referring to the table below.


Operating time of protection   $27(U V)$	External capacitor capacitance	Example of capacitor
1.2 to 2 s (at 0.2s increments)	$1500 \mu \mathrm{~F}$ (Withstand voltage: 200V DC min.)	Nichicon-made LNT2D152MSM
3 to 5 s (at 1s increments)	$6800 \mu \mathrm{~F}$ (Withstand voltage: 200V DC min.)	Nichicon-made LNT2D682MSM
6 to 10 s (at 1s increments)	$1600 \times \mathrm{t}(\mu \mathrm{F})$	

Outline of devices used in combination


- Specifications of AC meter (for Auto.V)

Product	AC meter *1
Type	FR-80AS (for Auto.V)
Operating principle	RMS rectifying type
Standard scale	Normal scale
Full scale $[\mathrm{A}]$	Low ratings: 20,40, and 100   Standard ratings: 60, 150, and 400 *2   Mass (g)
Class	2.5 (JIS C C 1102)
Dimensions $[\mathrm{mm}]$   (Front dimensions)	$80 \times 80$

Note: *1. Specify that the meter is to be used for the Auto.V when ordering the meter alone
*2. Set the full scale (A) to a value twice as large as the primary current setting (A) in the built-in OCR. For example, if the primary current of the OCR is 75A, read the full scale of the AC meter as 150A


## H.V. Distribution Equipment <br> Vacuum circuit breakers <br> Auto. V/New-Auto.V

## - Dimensions, mm

## Fixed/B type



HA08B-A6, A7
HA12B-A6, A7

${ }^{* 1}$ Mounting-hole depth dimension pitch: 491 mm side from panel surface
${ }^{* 2}$ Mounting-hole depth dimension pitch: 484 mm side from panel surface

( ): For HA12C

## - Dimensions, mm Fixed/C type

HA08C-A6, A7
HA12C-A6, A7



Fixed/P type
HA08P-H6, H7
HA12P-H6, H7

( ): For HA12P


HA08P-A6, A7
HA12P-A6, A7


## H.V. Distribution Equipment <br> Vacuum circuit breakers <br> Auto. V/New-Auto.V

## - Dimensions, mm Draw-out/X type



## ■ Dimensions, mm

 Draw-out/Y typeHA08AU-A8


■ Multiple function protectors and controllers


## H.V. Distribution Equipment

## Vacuum circuit breakers

## Auto. V/New-Auto.V

## - Wiring diagrams

HA08 $\square$-H6
HA12■-H6


## Connected with ground fault relay


(B, C, P types)


## H.V. Distribution Equipment <br> Vacuum circuit breakers <br> Auto. V/New-Auto.V

## ■ Wiring diagrams

HA08 $\square$-A6, B6, C6, D6
HA12 -A6, B6, C6, D6


HA08 $\square$-A7, B7, C7, D7
HA12 $\square-A 7, B 7, C 7, D 7$


52X :Magnetic contactor
$52 Z$ : Anti-pumping relay
52T : Shunt trip coil
52 C : Closing coil
M :Motor
Rf :Rectifier

LS 1 :Limit switch
LS 2 : Limit switch (motor stop)
$\mathrm{LS}_{3}$ : Limit switch (motor start)
$\mathrm{LS}_{4}$ :Limit switch (closes when the closing spring is in the stored condition)
LS5:Limit switch (closes when the closing spring is in the stored condition)

VCB-T1A, T1PA : Capacitor trip device OCR 51 : Overcurrent relay $\mathrm{CT}_{1}, \mathrm{CT}_{2}$ : Current transforme
Bz : Fault indicating buzzer
S : Buzzer stop switch
Ry : Auxiliary relay (HH22 or HH23)
51G: Ground fault relay
H.V. Distribution Equipment

Vacuum circuit breakers
Auto. V/New-Auto.V

HA12 $\square$-A6M1

(B, C, P types)


52C: Making coil
52T: Breaking coil
52X: Magnetic contactor for closing circuit
52Z: Pumping prevention relay
M: Control motor
RF: Rectifier
CT1 and CT2: Current transformers

LS1: Limit switch (Draw-out interlock use) LS2: Limit switch (Motor stopping use)
LS3: Limit switch (Motor startup use)
LS4: Limit switch
LS5: Limit switch (LS4 and LS5 are both turned on only when the circuit is ready to be turned on.)

SW1: Rotary switch (for CT tap or test selection) SW2: Toggle switch (for operation and trip lock selection) 51 and OCR: Overcurrent relay
Ry: Control relay
Bx: Fault display buzzer
S: Buzzer stop switch

## ■ Description

$7.2 / 3.6 \mathrm{kV}, 400 \mathrm{~A}, 600 \mathrm{~A}, 8 \mathrm{kA}, 12.5 \mathrm{kA}$ The new Multi-VCB series of generalpurpose vacuum circuit breakers are based on the conventional HA series and feature improved safety and ease of use. With 2300 mm high switchgear cubicles they can be stacked up to four high with consequent saving of installation space. Multi VCBs are available in different mounting version such as the fixed type ( $B, C, P$ ) and draw-out type (X, Y, U).

## - Features

- Highly reliable and safety closing system
- Manual-spring stored energy closing system for improved operation safety, reliability, and constant closing speed.
- Half the torque formerly required for the manual operation and a new-turntype handle improve operability.


- Motor-spring stored energy type also improved
- Instantaneous closing system The new closing system ensures instantaneous closing time of 30 ms . during switching to stand by circuit.
- AC/DC control circuit Common AC and DC control circuit eases application.
- More compact

Terminal blocks

- Terminal blocks are standard for the control circuits of motor-spring VCBs. Wire connect easily and quickly.


## - Auxiliary switches

- Slide-action auxiliary switch contacts improve contact reliability.
- Auxiliary switches can have up to 5 NO contacts, and up to 5 NC contacts may be added as options for external circuits.
- The width of the draw-out type is compatible with a panel width of 500 mm .
- The depth of the draw-out type is compatible with a panel depth of 700 mm .


KK03-062
Draw-out MW and PW type


Draw-out type for small depth switchboard.

■ Specifications

Type	HA08 $\square$ - ${ }^{\text {® }}$	HA12■-H■	HA08 $\square$-A■	HA12■-A■	HA08A $\square$-A■	HA12A $\square$-A■
Closing system	Manual-spring		Motor-spring		Motor-spring	
Installation $\square$	Fixed: B, C, P,		Fixed: B, C, P		Draw-out: X, Y, U	
Rated voltage (kV)	3.6/7.2		3.6/7.2		3.6/7.2	
Rated current (A)	400	600	400	600	400	600
Rated frequency (Hz)	50/60		50/60		50/60	
Rated breaking capacity (kA)	$\begin{aligned} & 8 \\ & 50 \mathrm{MVA} \text { at } 3.6 \mathrm{kV} \\ & 100 \mathrm{MVA} \text { at } 7.2 \mathrm{kV} \end{aligned}$	$\begin{aligned} & 12.5 \\ & 80 \mathrm{MVA} \text { at } 3.6 \mathrm{kV} \\ & 160 \mathrm{MVA} \text { at } 7.2 \mathrm{kV} \end{aligned}$	$\begin{aligned} & 8 \\ & 50 \mathrm{MVA} \text { at } 3.6 \mathrm{kV} \\ & 100 \mathrm{MVA} \text { at } 7.2 \mathrm{kV} \end{aligned}$	12.5   80MVA at 3.6 kV 160MVA at 7.2 kV	$\begin{aligned} & \hline 8 \\ & 50 \mathrm{MVA} \text { at } 3.6 \mathrm{kV} \\ & 100 \mathrm{MVA} \text { at } 7.2 \mathrm{kV} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 12.5 \\ 80 \mathrm{MVA} \text { at } 3.6 \mathrm{kV} \\ 160 \mathrm{MVA} \text { at } 7.2 \mathrm{kV} \\ \hline \end{array}$
Rated making current, peak value (kA)	20	31.5	20	31.5	20	31.5
Rated closing time	-		0.03		0.03	
Rated short-time current, 1 second (kA)	8	12.5	8	12.5	8	12.5
Insulation level	Dielectric: 22 kV , 1 minute Impulse (1.2 • $50 \propto$ ) : 60 kV					
Rated breaking time	3-cycle		3-cycle		3-cycle	
Opening time (s)	0.03		0.03		0.03	
Operating duty	$0-1 \mathrm{~min} .-\mathrm{CO}-3 \mathrm{~min} .-\mathrm{CO}$ or $\mathrm{CO}-15 \mathrm{sec} .-\mathrm{CO}$					
Life expectancy Mechanical (operations)   Electrical (operations)	$\begin{aligned} & 10,000 \\ & 10,000 \\ & \hline \end{aligned}$					
No. of operations (operations/hour)	60					
Applicable capacitor capacity * (kVA)	3,000	5,000	3,000	5,000	3,000	5,000
Auxiliary contact	$2 \mathrm{NO}+2 \mathrm{NC}(5 \mathrm{NO}+5 \mathrm{NC}$ available on request)				$5 \mathrm{NO}+5 \mathrm{NC}$	
Mass $\quad$ (kg) $)$ Fixed    Draw-out (X type)    Cradle for X type	23	26	-	28	- 34 11	-   35   11
Standard	H.V. circuit breaker: JIS C 4603 (1990), AC circuit breaker: JEC 2300 (1998)					

Note: * Maximum values when the VCB is used with a $6 \%$ reactor connected in a 6.6 kV AC circuit.
Halve these values for a 3.3 kV AC circuit.
■ Trip system
Fuji Electric FA Components \& Systems Co., Ltd./D \& C Catalog

## H.V. Distribution Equipment <br> Vacuum circuit breakers Multi VCB

■ Closing system

System		Specification   Voltage	Motor current	Coil current	Remarks
Motor-spring	A	$100 / 110 \mathrm{~V}$ AC/DC	0.5 A	4 A	
	B	$200 / 220 \mathrm{~V}$ AC/DC	0.5 A	2.5 A	• Use a VT with a capacity of at least 50VA.
	C	48 V DC	1.0 A	5.5 A	Use a 3A fuse to protect the control circuit
	D	$21 / 24 \mathrm{~V}$ DC	1.5 A	13 A	

## - Tripping system

System		Specification	Remarks
Shunt trip *1, *2	1	100/110V DC, 3.4A	For an AC-trip control circuit, use also a capacitor trip device VCB-T1A (for 100/110 AC) or VCBT2A (for 200/220V AC), sold separately.
	2	200/220V DC, 3A	
	3	48V DC, 5.5A	
	4	21/24V DC, 13A	
Current trip	5	3A 2 trip coil	Operating current: At least 3A   The impedance of coil is less than $8 \Omega$.

Note: $\quad{ }^{* 1}$ To use AC to trip the Multi VCB, use a capacitor trip device in combination with the trip system.
${ }^{* 2}$ Use the static-type OCR (overcurrent relay) in combination with Fuji Electric's QH-OC1 or QH-OC2, and fault display in combination with the JH11 type (shunt trip code 1, 2: DC1A coil, 3: DC3A coil, 4: DC3A coil, or 5: AC5A coil).

- Auxiliary contact

Contact arrangement	Specification	Remarks
2NO + 2NC	$100 / 200 \mathrm{~V}$ AC, 10A	$5 \mathrm{NO}+5 \mathrm{NC}$ contacts are available on request
standard provided	$100 / 200 \mathrm{~V}$ DC, 5/3A	

## ■ Type number nomenclature

- Fixed type


## Breaking capacity

08: 8kA (Rated current 400A)
12: 12.5kA (Rated current 600A)
Installation
B: Fixed, switchboard use
C: Fixed, cubicle use
P: Fixed, portable type

## Vacuum interrupter used

Blank: Standard level interrupter
L: Low-level-surge interrupter

## Tripping system

: Shunt trip 100/110V DC
: Shunt trip 200/220V DC
3: Shunt trip 48V DC
4: Shunt trip 21/24V DC
5: Current trip 3A - 2-trip coil
Closing system
H: Manual-spring
A: Motor-spring, Instantaneous closing 100/110V AC/DC
B: Motor-spring, Instantaneous closing 200/220V AC/DC
C: Motor-spring, Instantaneous closing 48V DC
D: Motor-spring, Instantaneous closing 21/24V DC

- Draw-out type

Basic type
Breaking capacity $\quad$
08: $\quad 8 \mathrm{kA}$ (Rated current 400A)
12: $\quad 12.5 \mathrm{kA}$ (Rated current 600 A )

## Installation

X: Draw-out, with cradle for JEM 1425 class CW
Y: Draw-out, with cradle and shutter for JEM 1425 class MW and PW
U: For use in small depth switchboard, JEM 1425 class CW

## Closing system

A: Motor-spring, Instantaneous closing 100/110V AC/DC
B: Motor-spring, Instantaneous closing 200/220V AC/DC
C: Motor-spring, Instantaneous closing 48V DC
D: Motor-spring, Instantaneous closing 21/24V DC

## Panel lead wire

Blank: With panel lead wire
K: Plug only
Position switch
Blank: With no position switch
S1: Run position and test position, both with SPDT contacts
Vacuum interrupter used
Blank: Standard level interrupter
L: Low-level-surge interrupter

## Tripping system

Shunt trip 100/110V DC
Shunt trip 200/220V DC
Shunt trip 48V DC
Shunt trip 21/24V DC

## H.V. Distribution Equipment <br> Vacuum circuit breakers Multi VCB

## ■ Types and ratings

Ratings	Installation	Closing system   Closing	Operating   system	Type	

## H.V. Distribution Equipment <br> Vacuum circuit breakers Multi VCB

■ Installation and accessories

Photo	Installation system	Description	Supplied accessories	Optional accessories
		- Fixed type   - Open-type switchboard, indoor use   - Manual-spring handle or motorspring   - H.V. main terminals are positioned at the top of the VCB. This facilitates replacement of VCB.	- Insulation tube for main terminal   - Manual handle for motor-spring type	- Supporter   - Capacitor trip device   - Vacuum condition tester   - Surge absorber
		- Fixed type   - Open-type cubicle use   - Manual-spring handle or motorspring   - H.V. main terminals are located at the top of VCB.   This facilitates replacement of VCB.	- Insulation tube for main terminal   - Manual handle for motor-spring type	- Supporter   - Capacitor trip device   - Vacuum condition tester   - Surge absorber
AF92-5	Fixed: P	- Fixed type   - Open-type, portable type   - Manual-spring handle or motorspring   - H.V. main terminals are located at the back of VCB. This facilitates replacement of VCB.	- Manual handle for motor-spring type	- Capacitor trip device   - Vacuum condition tester   - Surge absorber
	Draw-out: X   With cradle	- Draw-out type   - JEM 1425 Class CW type metal enclosure/indoor use   - Manual-spring handle or motorspring   - Cradle is provided to facilitate assembly and adjustment of switchgear.   - Interlock system and grounding device are provided.	- Manual handle for motor-spring type   - Draw-out handle	- Draw-out extension rail   - Position indicating switch   - Capacitor trip device   - Vacuum condition tester   - Surge absorber   - Lifter   - Testing jumper   - Connector with external lead wire
	Draw-out: Y   With cradle and shutter	- Draw-out type   - Class MW, PW type metal enclosure/indoor use   - Manual-spring handle or motorspring   - Cradle with shutter is provided to facilitate assembly and adjustment of switchgear.   - Interlock system and grounding device are provided.	- Manual handle for motor-spring type   - Draw-out handle	- Draw-out extension rail   - Position indicating switch   - Capacitor trip device   - Vacuum condition tester   - Surge absorber   - Lifter   - Testing jumper   - Connector with external lead wire
	Draw-out: U   With cradle and shutter	- Draw-out type   - Class CW type metal enclosure/indoor use   - Manual-spring handle or motorspring   - Cradle with shutter is provided to facilitate assembly and adjustment of switchgear.   - Interlock system and grounding device are provided.	- Manual handle for motor-spring type   - Draw-out handle	- Draw-out extension rail   - Position indicating switch   - Capacitor trip device   - Vacuum condition tester   - Surge absorber   - Lifter   - Testing jumper   - Connector with external lead wire

Supplied accessories

- Insulation tube for main
terminal
Installation
types: B and C
- Connector with external lead wire Installation types: $\mathrm{X}, \mathrm{Y}$ and U


■ Optional accessories

## - Supporter

Supporter kit for stabilizing the back of fixed type B, C VCB on the floor.

Type: C


- Vacuum condition tester VC-1A
For further information see page 12/25.


Capacitor trip device
VCB-T1A, T2A, VCB-T1PA, T2PA
These are used when the trip circuit is connected to AC power supply.

Type	VCB-T1A   VCB-T1PA	VCB-T2A   VCB-T2PA
Rated input   voltage	$100 / 110 \mathrm{~V}$ AC	200/220V AC
Shunt trip coil volt	100/110V DC	$200 / 220 \mathrm{~V}$ DC

Wiring diagram


- Draw-out extension rail (HZ2AE)

Used with draw-out type ( $\mathrm{X}, \mathrm{Y}, \mathrm{U}$ ). Use of an extension rail makes daily checking easier because the VCB can be pulled out of the panel.
Double stack types do not require lifters or chain blocks.


KK03-079

## - C-R type surge absorber

AF3320R3TXG0542
AF6620R3TXG0543
For further information see page 12/25.

- Testing jumper (HZ2AG)

Use to test remote ON/OFF operation of a VCB.


Surface mounting VCB-T1A, T2A

Flush mounting VCB-T1PA, T2PA


Name
r1: Charging resistor
r2: Discharge resistor
r3: Series resistor
C: Electrolytic capacitor SW: Discharge switch Z: Surge absorber

PL: Pilot lamp

- Position indicating switch (HZ2AD) Switch for indicating the service positions and test positions of draw-out (X, Y, U). Used for interlocking to other devices attached to the cradle for draw-out type.


## H.V. Distribution Equipment <br> Vacuum circuit breakers Multi VCB

## - Dimensions, mm

## Fixed/B type



HA08B-A
HA12B-A

${ }^{* 1}$ Mounting-hole depth dimension pitch: 368 mm side from panel surface
${ }^{* 2}$ Mounting-hole depth dimension pitch: 354 mm side from panel surface


## ■ Dimensions, mm Fixed/C type

## HA08C-A

HA12C-A


Fixed/P type

(): For HA12P


## H.V. Distribution Equipment <br> Vacuum circuit breakers Multi VCB



HA08AY-A


## HA08AU-A

HA12AU-A


## H.V. Distribution Equipment <br> Vacuum circuit breakers <br> Multi VCB

- Wiring diagrams


## - Fixed type

Manual-spring closing/current trip HA08■-H5
HA12 $\square$-H5

(- External terminal of VCB Auxiliary switch

- Internal of VCB



## Manual-spring closing/shunt trip

HA08 $\square-\mathrm{H} 1, \mathrm{HA08} \square-\mathrm{H} 2, \mathrm{HA08} \square-\mathrm{H} 3, \mathrm{HA08} \square-\mathrm{H} 4$
HA12 $\square-\mathrm{H} 1$, HA12 $\square-\mathrm{H} 2$, HA12 $\square-\mathrm{H} 3$, HA12 $\square-\mathrm{H} 4$


## Motor-spring closing/shunt trip

HA08 $\square$ - ${ }^{*}$, HA08 $\square$ - ${ }^{*}$, HA08 $\square$ - ${ }^{*}$, HA08 $\square-D^{*}$
HA12 $\square-\mathrm{A}^{\star}$, HA12 $\square-\mathrm{B}^{\star}$, HA12 $\square-\mathrm{C}^{\star}$, HA12 $\square-\mathrm{D}^{\star}$
(*: 1, 2, 3, 4)


VCB-T1A, T1PA : Capacitor trip device OCR : Overcurrent relay
$\mathrm{S}_{1}:$ Limit switch
LS 2 :Limit switch (motor stop)
$\mathrm{LS}_{3}$ : Limit switch (motor start)
$\mathrm{LS}_{4}$ :Limit switch (closes when the closing spring is in the stored condition)
LS 5 :Limit switch (closes when the closing spring is in the stored condition)

52 X :Magnetic contactor
$52 Z$ : Anti-pumping relay
52 T : Shunt trip coil
52 C : Closing coil
M :Motor
Rf :Rectifier


## H.V. Distribution Equipment <br> Vacuum circuit breakers <br> Multi VCB

## - Draw-out type

Motor-spring closing/shunt trip


$$
\frac{\mathrm{X}, \mathrm{Y}, \text { or U type }}{\text { (Front view of VCB) }}
$$

52C: Closing coil
52T: Breaking coil
52X: Magnetic contactor for closing circuit 52Z: Pumping prevention relay
M: Control motor
RF: Rectifier

LS1: Limit switch (Draw-out interlock use)
LS2: Limit switch (Motor stopping use)
LS3: Limit switch (Motor startup use)
LS4: Limit switch
LS5: Limit switch (LS4 and LS5 are both turned on
only when the the circuit is ready to be turned on.)

VCB-T1A or VCB-T1PA: Capacitor shunt trip power supply

OCR: Overcurrent relay

## H.V. Distribution Equipment Vacuum magnetic contactors HN series

## Description

3.3/6.6kV 200, 400 Amps

HN-type vacuum magnetic contactors incorporate a SUPER MAGNET that has a built-in IC. The IC minimizes the power consumption used in the closing circuit. HN types vacuum magnetic contactors operate on both AC and DC power supplies. A common insulating frame for units with a rated voltage of 3 kV and 6 kV simplifies switchgear design.

## - Features

The SUPER MAGNET

- Holding currents are minimized with an IC-controlled closing circuit. This is a cost-effective feature.
- Both AC and DC power supply operation possible
- The SUPER MAGNET holds without chattering even when the line control voltage drops.
- The SUPER MAGNET's wide range of operating voltages allows it to be used in countries throughout the world.


## Operating coil voltage

Rated voltage   AC $(50 / 60 \mathrm{~Hz})$	DC	Operating   voltage range
-	$21-24 \mathrm{~V}$	$85-110 \%$
-	48 V	of rated
$100-110 \mathrm{~V}$	$100-110 \mathrm{~V}$	voltage
$200-220 \mathrm{~V}$	$200-220 \mathrm{~V}$	

## Shared insulating frame for $3 \mathbf{k V}$ and

 6 kV contactorsHN type vacuum magnetic contactors have a special insulating frame. The dimensions of the frame are the same for both 3 kV and 6 kV models, which facilitates switchgear design.

## Advanced vacuum interrupter

A high performance interrupter minimizes surges due to closing and breaking, which makes special surge precautions unnecessary.

$\square$ Specifications

Type	HN46A $\square^{\star 1}$-2	HN46A $\square^{\star 1}-4$
Rated voltage (kV)	3.3/6.6	
Rated frequency (Hz)	50/60	
Rated current (A)	200	400
Rated breaking current (kA)	4	
Rated short-ime current (kA)	4 (2 sec.)	
Insulation level   Dielectric strength/1 min   (kV)   Impulse $1.2 \times 50 \propto s$	22 (16 between poles)   60 ( 45 between poles)	
Making and breaking capacity (kA)	1.6	3.2
Operating frequency   Normal energized type   Mechanically latched type	$\begin{aligned} & 600 \\ & 600 \end{aligned}$	
Electrical durability (Operations)	250,000	
Mechanical durability   (Operations)   Normal energized type   Mechanically latched type	$\begin{array}{r} 2,500,000 \\ 250,000 \\ \hline \end{array}$	
Average operating time    Opening time $(\mathrm{ms})$   Closing time $(\mathrm{ms})$   Normal energized type $(\mathrm{ms})$   Mechanically latched type	140 100 20	
Auxiliary contact	$3 \mathrm{NO}+3 \mathrm{NC}$	
Max. applicable load (3.3/6.6kV)   3 -phase squirrel-cage type induction motor(kW)   3 -phase transformer   (kVA)   Capacitor   (kVA)	$\begin{array}{r} 750 / 1500 \\ 1000 / 2000 \\ 1000 / 2000 \end{array}$	$\begin{aligned} & 1500 / 3000 \\ & 2000 / 4000 \\ & 2000 / 4000 \end{aligned}$
Mass   Fixed type (Normal energized) (kg)   Draw-out type (Normal energized)	$\begin{aligned} & 19 \\ & 34^{* 2} \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 19 \\ 34^{* 2} \end{array}$
*1: Installation system   P: Fixed type   X: Draw-out type   H: Draw-out type/Bushing type connector   Y: Draw-out type/Bushing type connector+shutter   (X, Y, H: With fuse holder)		and cradle

## H.V. Distribution Equipment <br> Vacuum magnetic contactors <br> HN series

Operating coil voltage and current Normal energized type

Type	Rated operating   voltage (V) ${ }^{*}$	Current (A)   Closing	Holding
HN46A $\square-2 S 1, ~ 4 S 1$	$100-110$ AC	3	0.05
	$100-110$ DC	3	0.05
HN46A $\square-2 S 2, ~ 4 S 2 ~$	$200-220$ AC	1.5	0.03
	$200-220$ DC	1.5	0.03
HN46A $\square-2 S 4, ~ 4 S 4 ~$	48 DC	8	0.1

■ Ratings of auxiliary switch (Built-in)

Contact arrangement	3NO+3NC	
Operating current	Res. Load	Ind. Load
$100 / 110 \mathrm{~V} \mathrm{AC}$	-	6 A
$200 / 220 \mathrm{~V} \mathrm{AC}$	-	6 A
48 V DC	6 A	6 A
$100 / 110$ V DC	2.5 A	1.3 A
$200 / 220 \mathrm{~V}$ DC	1 A	0.45 A

## ■ Types and ordering codes/Fixed types

Installation   system	Operating   system	Rated   voltage (kV)	Rated   current (A)	Appropriate   fuse type	Operating coil voltage (V)   Fixed type   (P)	Normal   energized	$3.3 / 6.6$
		200	-	Type and   ordering code			

## Types and ordering codes/Draw-out types

Installation system	Operating system	Rated voltage (kV)	Rated current (A)	Appropriate fuse type	$\begin{aligned} & \text { Operating coil voltage (V) } \\ & \text { AC DC } \end{aligned}$		Type and ordering code
Draw-out(X)	Normal energized	3.3/6.6	200	$\begin{aligned} & \hline \text { JC-6/5 } \\ & \text { JC-6/10 } \\ & \text { JC-6/30 } \\ & \text { JC-6/40 } \\ & \text { JC-6/50 } \\ & \text { JC-6/60 } \\ & \text { JC-6/75 } \\ & \text { JC-6/100* } \end{aligned}$	$\begin{aligned} & 100-110 \\ & 200-220 \end{aligned}$	$\begin{gathered} 100-110 \\ 200-220 \\ 48 \end{gathered}$	$\begin{aligned} & \text { HN46AX-2S1J } \\ & \text { HN46AX-2S2J } \\ & \text { HN46AX-2S4J } \end{aligned}$
	Mechanically latched	3.3/6.6	200		$\begin{aligned} & 100-110 \\ & 200-220 \end{aligned}$	$\begin{aligned} & \hline 100-110 \\ & 200-220 \\ & 21-24 \\ & 48 \end{aligned}$	$\begin{aligned} & \text { HN46AX-2L1J } \\ & \text { HN46AX-2L2J } \\ & \text { HN46AX-2L3J } \\ & \text { HN46AX-2L4J } \end{aligned}$

[^2]
## H.V. Distribution Equipment Vacuum magnetic contactors <br> HN series

## $■$ Type and ordering code/Draw-out types

Installation system	Operating system	Rated voltage (kV)	Rated current (A)	Appropriate fuse type	Operating AC	$\begin{aligned} & \text { I voltage (V) } \\ & \text { DC } \end{aligned}$	Type and ordering code
$\begin{aligned} & \text { Draw-out } \\ & \text { (X) } \end{aligned}$	Normal energized	3.3/6.6	200	$\begin{aligned} & \text { HF338E/3/20-100 } \\ & \text { HF338E/6/20, } 30 \end{aligned}$	$\begin{gathered} 100-110 \\ 200-220 \\ - \\ \hline \end{gathered}$	$\begin{aligned} & 100-110 \\ & 200-220 \\ & 48 \end{aligned}$	HN46AX-2S1A HN46AX-2S2A HN46AX-2S4A
				$\begin{aligned} & \hline \text { HF338E/3/150, } 200 \\ & \text { HF338E/6/40-200 } \end{aligned}$	$\begin{gathered} 100-110 \\ 200-220 \\ - \\ \hline \end{gathered}$	$\begin{aligned} & 100-110 \\ & 200-220 \\ & 48 \end{aligned}$	HN46AX-2S1B   HN46AX-2S2B   HN46AX-2S4B
				$\begin{aligned} & \text { JB-3/50-200 } \end{aligned}$	$\begin{gathered} 100-110 \\ 200-220 \\ - \end{gathered}$	$\begin{gathered} 100-110 \\ 200-220 \\ 48 \end{gathered}$	HN46AX-2S1C   HN46AX-2S2C   HN46AX-2S4C
	Mechanically latched	3.3/6.6	200	$\begin{aligned} & \text { HF338E/3/20-100 } \\ & \text { HF338E/6/20, } 30 \end{aligned}$	$\begin{gathered} 100-110 \\ 200-220 \\ = \\ - \end{gathered}$	$\begin{gathered} 100-110 \\ 200-220 \\ 21-24 \\ 48 \end{gathered}$	$\begin{aligned} & \text { HN46AX-2L1A } \\ & \text { HN46AX-2L2A } \\ & \text { HN46AX-2L3A } \\ & \text { HN46AX-2L4A } \end{aligned}$
				$\begin{aligned} & \hline \text { HF338E/3/150, } 200 \\ & \text { HF338E/6/40-200 } \end{aligned}$	$\begin{gathered} 100-110 \\ 200-220 \\ - \\ - \end{gathered}$	$\begin{gathered} 100-110 \\ 200-220 \\ 21-24 \\ 48 \end{gathered}$	$\begin{aligned} & \text { HN46AX-2L1B } \\ & \text { HN46AX-2L2B } \\ & \text { HN46AX-2L3B } \\ & \text { HN46AX-2L4B } \end{aligned}$
				$\begin{aligned} & \text { JB-3/50-200 } \\ & \text { JB-6/20, } 50 \end{aligned}$	$\begin{gathered} 100-110 \\ 200-220 \\ - \\ = \end{gathered}$	$\begin{gathered} 100-110 \\ 200-220 \\ 21-24 \\ 48 \end{gathered}$	$\begin{aligned} & \text { HN46AX-2L1C } \\ & \text { HN46AX-2L2C } \\ & \text { HN46AX-2L3C } \\ & \text { HN46AX-2L4C } \end{aligned}$
Draw-out/ bushing type connector (H)	Normal energized	3.3/6.6	200	$\begin{aligned} & \text { HF338E/3/20-100 } \\ & \text { HF338E/6/20, } 30 \end{aligned}$	$\begin{gathered} 100-110 \\ 200-220 \\ - \\ \hline \end{gathered}$	$\begin{aligned} & 100-110 \\ & 200-220 \\ & 48 \end{aligned}$	HN46AH-2S1A HN46AH-2S2A HN46AH-2S4A
				$\begin{aligned} & \text { HF338E/3/150, } 200 \\ & \text { HF338E/6/40-200 } \end{aligned}$	$\begin{gathered} 100-110 \\ 200-220 \\ - \end{gathered}$	$\begin{gathered} 100-110 \\ 200-220 \\ 48 \end{gathered}$	HN46AH-2S1B   HN46AH-2S2B   HN46AH-2S4B
				$\begin{aligned} & \text { JB-3/50-200 } \\ & \text { JB-6/20, } 50 \end{aligned}$	$\begin{gathered} 100-110 \\ 200-220 \\ - \end{gathered}$	$\begin{gathered} 100-110 \\ 200-220 \\ 48 \end{gathered}$	HN46AH-2S1C HN46AH-2S2C HN46AH-2S4C
	Mechanically latched	3.3/6.6	200	$\begin{aligned} & \text { HF338E/3/20-100 } \\ & \text { HF338E/6/20, } 30 \end{aligned}$	$\begin{gathered} 100-110 \\ 200-220 \\ = \\ - \end{gathered}$	$\begin{gathered} 100-110 \\ 200-220 \\ 21-24 \\ 48 \end{gathered}$	$\begin{aligned} & \text { HN46AH-2L1A } \\ & \text { HN46AH-2L2A } \\ & \text { HN46AH-2L3A } \\ & \text { HN46AH-2L4A } \end{aligned}$
				$\begin{aligned} & \text { HF338E/3/150, } 200 \\ & \text { HF338E/6/40-200 } \end{aligned}$	$\begin{gathered} \hline 100-110 \\ 200-220 \\ = \\ - \end{gathered}$	$\begin{aligned} & 100-110 \\ & 200-220 \\ & 21-24 \\ & 48 \end{aligned}$	$\begin{aligned} & \text { HN46AH-2L1B } \\ & \text { HN46AH-2L2B } \\ & \text { HN46AH-2L3B } \\ & \text { HN46AH-2L4B } \end{aligned}$
				$\begin{aligned} & \text { JB-3/50-200 } \\ & \text { JB-6/20, } 50 \end{aligned}$	$\begin{gathered} 100-110 \\ 200-220 \\ = \\ - \end{gathered}$	$\begin{aligned} & 100-110 \\ & 200-220 \\ & 21-24 \\ & 48 \\ & \hline \end{aligned}$	HN46AH-2L1C   HN46AH-2L2C   HN46AH-2L3C   HN46AH-2L4C
Draw-out/ bushing type connector+ shutter (Y)	Normal energized	3.3/6.6	200	$\begin{aligned} & \text { HF338E/3/20-100 } \\ & \text { HF338E/6/20, } 30 \end{aligned}$	$\begin{gathered} 100-110 \\ 200-220 \\ - \end{gathered}$	$\begin{gathered} 100-110 \\ 200-220 \\ 48 \end{gathered}$	HN46AY-2S1A   HN46AY-2S2A   HN46AY-2S4A
				$\begin{aligned} & \hline \text { HF338E/3/150, } 200 \\ & \text { HF338E/6/40-200 } \end{aligned}$	$\begin{aligned} & 100-110 \\ & 200-220 \end{aligned}$	$\begin{aligned} & 100-110 \\ & 200-220 \\ & 48 \end{aligned}$	HN46AY-2S1B HN46AY-2S2B HN46AY-2S4B
				$\begin{aligned} & \hline \text { JB-3/50-200 } \\ & \text { JB-6/20. } 50 \end{aligned}$	$\begin{aligned} & 100-110 \\ & 200-220 \end{aligned}$	$\begin{aligned} & 100-110 \\ & 200-220 \\ & 48 \end{aligned}$	HN46AY-2S1C HN46AY-2S2C HN46AY-2S4C
	Mechanically latched	3.3/6.6	200	$\begin{aligned} & \text { HF338E/3/20-100 } \\ & \text { HF338E/6/20, } 30 \end{aligned}$	$\begin{gathered} 100-110 \\ 200-220 \\ - \\ - \end{gathered}$	$\begin{gathered} 100-110 \\ 200-220 \\ 21-24 \\ 48 \end{gathered}$	HN46AY-2L1A   HN46AY-2L2A   HN46AY-2L3A   HN46AY-2L4A
				$\begin{aligned} & \text { HF338E/3/150, } 200 \\ & \text { HF338E/6/40-200 } \end{aligned}$	$\begin{gathered} 100-110 \\ 200-220 \\ - \\ - \end{gathered}$	$\begin{gathered} 100-110 \\ 200-220 \\ 21-24 \\ 48 \end{gathered}$	HN46AY-2L1B   HN46AY-2L2B   HN46AY-2L3B   HN46AY-2L4B
				$\begin{aligned} & \hline \text { JB-3/50-200 } \\ & \text { JB-6/20, } 50 \end{aligned}$	$\begin{gathered} 100-110 \\ 200-220 \\ = \\ - \end{gathered}$	$\begin{gathered} 100-110 \\ 200-220 \\ 21-24 \\ 48 \end{gathered}$	$\begin{aligned} & \text { HN46AY-2L1C } \\ & \text { HN46AY-2L2C } \\ & \text { HN46AY-2L3C } \\ & \text { HN46AY-2L4C } \end{aligned}$

## H.V. Distribution Equipment Vacuum magnetic contactors HN series

## - Type number nomenclature


manically latched type

Operating coil voltage (Closing/Trip)
1: 100-110V AC, 100-110V DC
200-220V AC, 200-220V DC
3: 21-24V DC (Mechanically latched type only)
4: 48V DC
5: Closing 100-110V AC, $100-110 \mathrm{~V}$ DC
Trip $200-220 \mathrm{~V}$ AC, 200-220V DC
6: Closing 200-220V AC, 200-220V DC
Trip $100-110 \mathrm{~V}$ AC, $100-110 \mathrm{~V}$ DC
7: Other voltage
Specify operating voltage when ordering
S1: SPDT contacts for operating position and test position S2 : 2PDT contacts for operating position and test position Blank: No position switch

Bushing CT (BCT) (Optional accessories)*
For Y, H types
A to K (Specify BCT code when ordering, see page 12/61 (2))
VT (Optional accessories)*
For X, Y, H types
P1 to PA (Specify VT code when ordering, see page 12/61 (1))
Fuse holder type (For X, Y, H types)
A: For HF338E/3/20-100 or HF338E/6/20, 30 fuse
B: For HF338E/3/150, 200 or HF338E/6/40-200 fuse
C: For JB-3/50-200 or JB-6/20, 50 fuse
D: For JB-6/100-200 fuse
J: For JC-6/5-75 fuse
K: For JC-6/100 fuse

## ■ Supplied accessories for draw-out types - Mechanical interlock

1. When the contactor is closed, it is impossible to shift it from the service position to the test position.
2. Under the condition where the contactor is closed, it is impossible to change it from the test position to the service position.
3. At both the test and the service positions, the interlock pin will engage and so lock the contactor in position. Thus the positions are always fixed correctly. Even if a closing operation is carried out at an intermediate position, the contactor cannot be closed.

## - Electrical interlock

When the interlock pin is locked at both the service and test positions the limit switch will be closed, and the contactor can be operated.

Ratings of interlock contact

Contact arrangement	SPDT	
Operating current	Res. Load	Ind. Load
250V AC	16 A	10 A
125V AC	16 A	10 A
125V DC	0.6 A	0.3 A

## Ratings of fuse blown indicator

Contact arrangement	$1 \mathrm{NO}+1 \mathrm{NC}$	
Operating current	Res. Load	Ind. Load
250V AC	16 A	10 A
250V DC	0.3 A	0.06 A
125V DC	0.6 A	0.3 A
30V DC	6 A	4 A

## - Shutter

Cradle with bushing type connectors can also be provided with a shutter.

## - On-off counter (6-digit)

An on-off counter is standard with all VCB series. This easily legible counter enables quick estimation of remaining service life.

# H.V. Distribution Equipment Vacuum magnetic contactors <br> HN series 

## ■ Optional accessories

## Position switches

Type:Position switch N1 (Ordering code:HZ1AD)
SPDT position switches can be fitted to indicate the test position and the service position. (For X, Y, H)

## Ratings of position switch

Contact arrangement	Service pos. SPDT, Test pos. SPDT	
	Service pos. 2PDT, Test pos. 2PDT	
Operating current	Res. Load	Ind. Load
250V AC/DC	10 A	NC: 2A, NO: 1.5A
125V AC/DC	NC: 7.5 A, NO: 6A	
30V DC	15 A	10A
14V DC	NC: 15A, NO: 10A	

## - VT and bushing CT (BCT)

Draw-out types have room for fitting VTs in the space box.
It is possible to fit up to 2 VTs in the space. 3 BCTs can be fitted to the bushing type connector. The ratings are shown in the Table.

## Ratings of VT

For VT	For control power supply *
$3300 \mathrm{~V} / 110 \mathrm{~V}, 220 \mathrm{~V} 1.0$ class 100 VA	$3300 \mathrm{~V} / 110 \mathrm{~V}, 220 \mathrm{~V} 400 \mathrm{VA}$
$6600 \mathrm{~V} / 110 \mathrm{~V}, 220 \mathrm{~V} 1.0$ class 100 VA	$6600 \mathrm{~V} / 110 \mathrm{~V}, 220 \mathrm{~V} 400 \mathrm{VA}$

* When used as control power supply, it becomes short-time rating.


## Ratings of BCT

Max.   voltage (kV)	Frequency   $(\mathrm{Hz})$	Primary   current(A)	Secondary   current(A)	Burden   (VA)	Overcurrent   capacity
6.9	$50 / 60$	$20,30,40,50$   $75,100,150$   $200,300,400$	5	25	40 times,
				1 sec	

## - Capacitor trip devices

Type	Ordering   code	Tripping time after   power failure:	Input voltage	Tripping coil   voltage
VS-T1A	HZ1NI	30 sec.	$100-110$ V AC	$100-110 \mathrm{~V}$ DC
VS-T2A	HZ1NJ		$200-220$ V AC	$200-220 \mathrm{~V}$ DC

## - C-R type surge absorber

Type	Ordering   code	Max. operating   voltage	Frequency	Rated   voltage	
AF3320R3	HZ1AK	$115 \%$   rated voltage	$50 / 60 \mathrm{~Hz}$	$\frac{3.3 \mathrm{kV}}{\sqrt{3}}$	
TXG0542			$50 / 60 \mathrm{~Hz}$	$\frac{6.6 \mathrm{kV}}{\sqrt{3}}$	
AF6620R3   TXG0543	HZ1AL				

## Dimensions,mm/Surge absorber



## Codes of VTs and BCTs for draw-out types

(1) VT (For X, Y, H)			(2) BCT (For Y, H)					
Code	Voltage	No. of VTs	Code	Current	No. of BCTs	Code	Current	No. of BCTs
P1	$3.3 \mathrm{kV} / 110 \mathrm{~V}$	1	A2	20/5A	2	F2	100/5A	2
P2	$3.3 \mathrm{kV} / 110 \mathrm{~V}$	2	A3	20/5A	3	F3	100/5A	3
P3	$6.6 \mathrm{kV} / 110 \mathrm{~V}$	1	B2	30/5A	2	G2	150/5A	2
P4	$6.6 \mathrm{kV} / 110 \mathrm{~V}$	2	B3	30/5A	3	G3	150/5A	3
P5	$3.3 \mathrm{kV} / 220 \mathrm{~V}$	1	C2	40/5A	2	H2	200/5A	2
P6	$3.3 \mathrm{kV} / 220 \mathrm{~V}$	2	C3	40/5A	3	H3	200/5A	3
P7	$6.6 \mathrm{kV} / 220 \mathrm{~V}$	1	D2	50/5A	2	J2	300/5A	2
P8	$6.6 \mathrm{kV} / 220 \mathrm{~V}$	2	D3	50/5A	3	J3	300/5A	3
P9	$3.3 \mathrm{kV} / 110 \mathrm{~V}$	1	E2	75/5A	2	K2	400/5A	2
	$3.3 \mathrm{kV} / 220 \mathrm{~V}$	1	E3	75/5A	3	K3   Blank	$400 / 5 \mathrm{~A}$   Without BCT	3
PA	$6.6 \mathrm{kV} / 110 \mathrm{~V}$	1						
	$6.6 \mathrm{kV} / 220 \mathrm{~V}$	1						
Blank	Without VT							

- Mounting position of CT 2 CTs-Fit to U and W poles 3 CTs- Fit to U, V and W poles
(A) (S) (T)
(ㄴ) (ㄴ) (ㄴ)


Example: • Two 6.6kV/110V VTs and no BCT
HN46A $-\square \square \square \square / P 4$

- No VT and two 50/5A BCTs

HN46A $\square-\square \square \square / D 2$

- Two 6.6kV/110V VTs and two 50/5A BCTs HN46A $\square-\square \square \square$ P4D2


## H.V. Distribution Equipment <br> Vacuum magnetic contactors HN series

## Optional accessories

## - Power fuses for draw-out types

The table indicates the appropriate current limiting fuses for use with HN vacuum magnetic contactors.

System voltage (kV)	Type   Refer to the Table below	Ratings Voltage (kV)	Breaking capacity (kA)	Minimum breaking current(A)	Current   (A)	Applicable loa $3 \phi$ Motor Squirrel-cage type(kW)	(max)   Wound-rotor type(kW)	$3 \phi$ Transformer (kVA)	$3 \phi$ Capacitor   (kVA)
3.3	HF338E/3/20 HF338E/3/30 HF338E/3/40 HF338E/3/50	3.6	$\begin{aligned} & 40 \\ & (250 \mathrm{MVA}) \end{aligned}$	All excessive currents	$\begin{aligned} & 20 \\ & 30 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & - \\ & \overline{37} \\ & 55 \end{aligned}$	$\begin{array}{r} 55 \\ 90 \\ 132 \\ 160 \end{array}$	$\begin{array}{r} 50 \\ 100 \\ 150 \\ 200 \end{array}$	$\begin{array}{r} 30 \\ 75 \\ 100 \\ 150 \end{array}$
	HF338E/3/75 HF338E/3/100 HF338E/3/150 HF338E/3/200				$\begin{array}{r} 75 \\ 100 \\ 150 \\ 200 \\ \hline \end{array}$	$\begin{array}{r} 90 \\ 132 \\ 200 \\ 355 \\ \hline \end{array}$	$\begin{aligned} & 250 \\ & 355 \\ & 450 \\ & 630 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 400 \\ & 500 \\ & 750 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 400 \\ & 500 \\ & 750 \\ & \hline \end{aligned}$
	$\begin{array}{\|l\|} \hline \text { JB-3/50 } \\ \text { JB-3/100 } \\ \text { JB-3/150 } \\ \text { JB-3/200 } \end{array}$	3.6	$\begin{aligned} & 40 \\ & (250 \mathrm{MVA}) \end{aligned}$	$\begin{array}{r} 350 \\ 700 \\ 1050 \\ 1400 \end{array}$	$\begin{array}{r} 50 \\ 100 \\ 150 \\ 200 \end{array}$	$\begin{aligned} & 160 \\ & 355 \\ & 560 \\ & 710 \end{aligned}$	$\begin{aligned} & 200 \\ & 355 \\ & 560 \\ & 710 \end{aligned}$	$\begin{array}{r} 250 \\ 500 \\ 750 \\ 1000 \end{array}$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$
	$\begin{array}{\|l\|} \hline \text { JC-6/5 } \\ \text { JC-6/10 } \\ \text { JC-6620 } \\ \text { JC-6/30 } \\ \text { JC-6/40 } \\ \text { JC-6/50 } \\ \text { JC-6/60 } \\ \text { JC-6/75 } \\ \text { JC-6/100 } \\ \hline \end{array}$	3.6	$\begin{aligned} & 40 \\ & (250 \mathrm{MVA}) \end{aligned}$	11 22 58 85 120 140 170 250 400	$\begin{array}{r} 5 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 60 \\ 75 \\ 100 \end{array}$	- - - - -	$\begin{aligned} & \text { - } \\ & \text { - } \\ & \text { - } \\ & \text { - } \end{aligned}$	5 15 50 100 150 200 250 300 500	5 15 30 50 75 100 150 200 250
6.6	$\mathrm{HF} 338 \mathrm{E} / 6 / 20$ $\mathrm{HF} 338 \mathrm{E} / 6 / 30$ $\mathrm{HF} 338 \mathrm{E} / 6 / 40$ $\mathrm{HF} 338 \mathrm{E} / 6 / 50$	7.2	$\begin{aligned} & 40 \\ & (500 \mathrm{MVA}) \end{aligned}$	All excessive currents	$\begin{aligned} & 20 \\ & 30 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 3 \overline{7} \\ & 75 \\ & 90 \end{aligned}$	$\begin{aligned} & 110 \\ & 160 \\ & 315 \\ & 375 \end{aligned}$	$\begin{array}{r} 75 \\ 150 \\ 250 \\ 300 \end{array}$	$\begin{array}{r} 75 \\ 150 \\ 200 \\ 300 \end{array}$
	HF338E/6/75 HF338E/6/100 HF338E/6/150				$\begin{array}{r} 75 \\ 100 \\ 150 \\ \hline \end{array}$	$\begin{aligned} & 160 \\ & 250 \\ & 375 \end{aligned}$	$\begin{array}{r} 530 \\ 750 \\ 1050 \\ \hline \end{array}$	$\begin{array}{r} 500 \\ 750 \\ 1000 \\ \hline \end{array}$	$\begin{array}{r} 500 \\ 750 \\ 1000 \end{array}$
	HF338E/6/200	7.2	$\begin{aligned} & \hline 31.5 \\ & (390 \mathrm{MVA}) \\ & \hline \end{aligned}$	1000	200	530	1500	1500	1500
	$\begin{array}{\|l\|} \hline \text { JB-6/20 } \\ \text { JB-6/50 } \\ \text { JB-6/100 } \\ \text { JB-6/150 } \\ \text { JB-6/200 } \\ \hline \end{array}$	7.2	$\begin{aligned} & \hline 40 \\ & (500 \mathrm{MVA}) \end{aligned}$	$\begin{array}{r} 140 \\ 350 \\ 700 \\ 1050 \\ 1400 \\ \hline \end{array}$	$\begin{array}{r} 20 \\ 50 \\ 100 \\ 150 \\ 200 \\ \hline \end{array}$	$\begin{array}{r} 160 \\ 355 \\ 710 \\ 1000 \\ 1500 \\ \hline \end{array}$	$\begin{array}{r} 200 \\ 355 \\ 710 \\ 1000 \\ 1500 \\ \hline \end{array}$	$\begin{array}{r} 200 \\ 500 \\ 1000 \\ 1500 \\ 2000 \\ \hline \end{array}$	$\begin{array}{r} 150 \\ 500 \\ 750 \\ 1000 \\ 1500 \\ \hline \end{array}$
	JC-6/5 JC-6/10 JC-6/20 JC-6/30 JC-6/40 JC-6/60 JC-6/75 JC-6/100	7.2	$\begin{aligned} & 40 \\ & (500 \mathrm{MVA}) \end{aligned}$	$\begin{array}{r} 11 \\ 22 \\ 58 \\ 85 \\ 120 \\ 140 \\ 170 \\ 250 \\ 400 \end{array}$	$\begin{array}{r} 5 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 60 \\ 75 \\ 100 \end{array}$			$\begin{array}{r} 15 \\ 30 \\ 100 \\ 200 \\ 300 \\ 300 \\ 500 \\ 750 \\ 1000 \\ \hline \end{array}$	$\begin{array}{r} 15 \\ 30 \\ 50 \\ 100 \\ 150 \\ 200 \\ 300 \\ 400 \\ 500 \end{array}$

Notes: JB fuse: The rated current value meets the requirements of JEC-2330 (1986) M (motor). HF and JC fuses: The rated current value meets the requirements of JEC-2330 (1986)G (general). Contact FUJI when the JC fuse will be used for a motor load application.

## Fuse and fuse holder

Fuse holder	Fuse	
Type number 10th character	Type	Ordering code
A	HF338E/3/20   HF338E/3/30   HF338E/3/40   HF338E/3/50   HF338E/3/75   HF338E/3/100	HF1E-020   HF1E-030   HF1E-040   HF1E-050   HF1E-075   HF1E-100
	$\begin{aligned} & \text { HF338E/6/20 } \\ & \text { HF338E/6/30 } \end{aligned}$	$\begin{array}{r} \text { HF2E-020 } \\ \text { HF2E-030 } \\ \hline \end{array}$


Fuse holder	Fuse	
Type number 10th character	Type	Ordering code
B	HF338E/3/150 HF338E/3/200	HF1E-150 HF1E-200
	HF338E/6/40 HF338E/6/50 HF338E/6/75 HF338E/6/100 HF338E/6/150 HF338E/6/200	HF2E-040   -HF2E-050   HF2E-075 HF2F-100   HF2E-150   HF2E-200
C	JB-3/50 $\mathrm{JB}-3 / 100$ $\mathrm{JB} 3 / 150$ $\mathrm{JB}-3 / 200$ $\mathrm{JB}-6 / 20$ $\mathrm{JB}-6 / 50$	HF1B-050 -HF1B-100 HF1B-200 HF2B-020 HF2B-050


Fuse holder	Fuse	
Type number 10th character	Type	Ordering code
D	JB-6/100 JB-6/200	HF2B-100 HF2B-150 HF2B-200
J	JC-6/5 JC-6/20 JC-6/30 JC-6/40 JC-6/60 JC-6/75 JC-6/100 JC-6/100	

## ■ Optional accessories



Connector with external lead wires (HZ1NH)


Testing jumper (HZ1NG)


Vacuum condition tester VC-1A (HZ1AM)


Lifting dolly L-2HNB (HZ2NB)
(For X, Y, H)

■ Dimensions,mm

- Fixed type
- P type

- Draw-out type
- Y and H types


Fuji Electric FA Components \& Systems Co., Ltd./D \& C Catalog Information subject to change without notice

## H.V. Distribution Equipment

## Vacuum magnetic contactors <br> HN series

## - Wiring diagrams <br> Normal energized type



- Internal circuit of contactor
$--\quad$ Wiring for optional accessories (VT, CT)
---- External circuit


Wiring diagram for extenal relay cicuit (Example)


MCX

■ Terminal numbers
Fixed type
Draw-out types Without VT

Red


Yellow $\quad$| 5 | 6 | 7 |
| :---: | :---: | :---: |
| 8 | 9 | 10 |



Blue

$$
\begin{array}{|l|l|l|}
\hline 11 & 12 & 13 \\
\hline 14 & 15 & 16 \\
\hline
\end{array}
$$



11	12	13
14	15	16


11	12	13
14	15	16



17	18	19
20	21	22

# H.V. Distribution Equipment Vacuum magnetic contactors <br> HN series 

- Wiring diagrams

Mechanically-latched type


Wiring diagram connected to
capacitor trip device (Optional)


[^3]■ Terminal numbers
Fixed type
Draw-out types
Without VT
With one VT
With two VTs

Red





Yellow




Blue


Green




- Internal circuit of contactor
--- Wiring for optional accessories (VT, CT)
-.-- External circuit
Note: IC control device is provided with protection circuit from an anti-pumping.


Wiring diagram for extenal relay circuit (Example)


MCX

## Protective Relays <br> QH series <br> General information

## QH series protective relays

## Description

FUJI overcurrent relays and voltage relays have inverse-time characteristics (induction and static types). The QH series is compact budget priced version and is easily installed on panels. It is drum-shaped and ideally suited for general industrial applications.
The directional ground-fault relay (DG) is used, combined with zero-phase current transformer (ZCT) and zero-phase potential input device (ZPD).
The ground-fault relay (GR) is used, combined with zero-phase current transformer (ZCT).

## ■ Specifications

- Overcurrent relays

Type		QH-OC1	QH-OC2
Trip system		Shunt trip	Current trip
Rated current		5A	
Rated frequency		$50 / 60 \mathrm{~Hz}$	
Inverse time-lag element	Setting range	3-3.5-4-4.5-5-6A	
	Time-lag setting	0.5-1-2-3-4-5-6-7-8-9-10-15-20-30-40-50 (16 steps)	
	Operate time	$300 \%$ overcurrent: $10 \mathrm{~s} \pm 17 \%$ or less, $700 \%$ overcurrent: $1.67 \mathrm{~s} \pm 12 \%$ or less at min. operating current and time-lag setting $=10$	
	Operate characteristic	Extremely inverse time-lag	
Instantaneous element	Setting range	20-30-40-50-60-Lock	
	Operate time	200\%, 0.05s or less	
Indication LED		Start, time-lag elapsed, operate, power, alarm	
Contact	For trip $\begin{aligned} & \text { QH-OC1: } 1 \mathrm{NO} \\ & \text { QH-OC2: } 2 \mathrm{NC} \end{aligned}$	```Making capacity 10 A at 100 V DC, 220V DC (L/R=7ms) Breaking capacity 1 A at 110 V DC ( \(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}\) ) 3.5 A at 220 V AC \((\cos \varnothing=0.4)\)```	Breaking capacity 60 A at 110 V AC (depending on CT burden)
	For alarm, 1NO	2 A at 24 V DC (max. 30W at 125 V DC) (L/R=7ms) 2 A at 100 V AC (max. 220 VA at 250 V AC ) $(\cos \varnothing=0.4)$	
Consumed VA		2VA (at 5A)	2VA (at 5A)
Mass		1.1 kg	1.1 kg

- Voltage relays

Type		Overvoltage relay	Undervoltage relay
		QH-OV1	QH-UV1
Trip system		Shunt trip	
Rate voltage		110V AC	110V AC
Setting range		115-120-125-130-135-140-150V	60-65-70-75-80-85-90-95-100V
Operate time setting		0.1-0.2-0.5-1-1.5-2-2.5-3-4-5-6-8-10s	0.1-0.2-0.5-1-1.5-2-2.5-3-4-5-6-8-10s
Indication		Start, operate, power	
Contact	For trip: 1NO	Making capacity 5 A at 250 V AC $(\cos \varnothing=0.4)$ Breaking capacity 2 A at 250 V AC $(\cos \varnothing=0.4)$	
	For alarm: 1NO		
Consumed VA		2VA	4VA
Mass		1 kg	1.1 kg

- Specifications
- Directional ground-fault relays

- Accessories, sold separately


## Zero-phase current transformers

Description	Primary current   (A)	Rated primary voltage (kV)	Dielectric strength	Overcurrent constant	Type	Mass   (kg)
Round-hole through-type	$\begin{aligned} & 100 \\ & 200 \\ & 300 \\ & 400 \\ & 600 \end{aligned}$	3.3/6.6   50/60Hz   common use	$22 \mathrm{kV} \mathrm{AC}$$1 \mathrm{~min} .$	40	$\begin{aligned} & \hline \text { ZCT-561A } \\ & \text { ZCT-562A } \\ & \text { ZCT-653 } \\ & \text { ZCT-654 } \\ & \text { ZCT-906 } \end{aligned}$	$\begin{array}{\|l\|} \hline 0.5 \\ 0.5 \\ 0.8 \\ 0.8 \\ 3.0 \end{array}$
Split-toroidal type	$\begin{aligned} & 100 \\ & 400 \end{aligned}$				$\begin{aligned} & \text { ZCT-451D } \\ & \text { ZCT-654D } \end{aligned}$	$\begin{aligned} & 0.9 \\ & 1.2 \end{aligned}$

Zero-phase potential input device

Type	ZPD-1
Structure	Indoor use, epoxi-resin   insulator
Rated voltage	7.2 kV
Electrostatic   capacitance	$3 \times 250 \mathrm{pF}$
Dielectric   strength	Class 6A, 22kV AC   $(1$ minute $)$
Mass (kg)	3.6 kg (1set = 3pcs)

- Ground-fault relays

Type		QH-GR3A
Trip system		Shunt trip, current trip
Operating current setting		0.1-0.2-0.4-0.6-0.8A
Operating time		0.1 to 0.3 s at $130 \%$ current setting value 0.1 to 0.2 s at $400 \%$ current setting value
Indication	Operation	Magnetic inversion (manual reset)
	Power	Green LED
Contact	For trips: 2PDT	```Making capacity: 10 A at 250 V AC \((\cos \varnothing=0.4), 10 \mathrm{~A}\) at 125 V DC ( \(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}\) ) Breaking capacity: 7.5 A at 110 V AC (max. 825 VA at 250 V AC) \((\cos \varnothing=0.4)\) 1.2 A at 100 V DC (max. 120W at 125 V DC) ( \(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}\) )```
	For alarm: 1NO	2 A at 110 V AC (max. 220 VA at 250 V AC ) 2 A at 24 V DC ( 0.1 A at 125 V DC)
Consumed VA		5VA (at operating)
Test button		Providied
Mass		1.7 kg

## - Type number nomenclature

## - Protective relays

Basic type
QH: Static type
Relay type
OC1: Overcurrent relay (shunt trip)
OC2: Overcurrent relay (current trip)
OV1: Overvoltage relay
UV1: Undervoltage relay
DG3: Directional ground-fault relay
(for receiving circuit)
DG4: Directional ground-fault relay
(for branching circuit)
GR3: Ground-fault relay

## Zero-phase current transformers

 (Hole-through diameter/Rated current) 561A: Hole-through type Ø56/100A 562A: Hole-through type Ø56/200A 653: Hole-through type Ø65/300A 654: Hole-through type $\varnothing 65 / 400 \mathrm{~A}$ 906: Hole-through type $\varnothing 90 / 600 \mathrm{~A}$ 451D: Split-toroidal type $\varnothing 45 / 100 \mathrm{~A}$ 654D: Split-toroidal type Ø65/400A

## - Zero-phase potential input device

 ZPD-1$\square$ Zero-phase potential input device

## Ordering information

Specify the following:

1. Type number
2. Rated control voltage and frequency
3. Rated current and frequency (Overcurrent relay)
4. Setting range (Volts or Amperes)

## ■ Dimensions, mm

## - Relays

QH-OC1, OC2, OV1, UV1, DG3, DG4, GR3A


- Zero-phase current transformers

ZCT-561A, 562A


ZCT-653, 654


- Zero-phase potential input device ZPD-1


ZCT-906


ZCT-451D, 654D

( ) : for ZCT-654D

## External wiring diagrams

## QH-OC1



QH-DG3, shunt-trip


QH-DG3, current trip


## QH-OC2



QH-DG3 with QH-DG4
Installation at receiving point and branch point (QH-DG3 at receiving point, QH-DG4 at branch point)


QH-GR3, shunt-trip


■ Internal wiring diagram/QH-GR3


## ■ Characteristic curves

QH overcurrent relay


## Catalog Disclaimer

The information contained in this catalog does not constitute an express or implied warranty of quality, any warranty of merchantability of fitness for a particular purpose is hereby disclaimed.

Since the user's product information, specific use application, and conditions of use are all outside of Fuji Electric FA Components \& Systems'control, it shall be the responsibility of the user to determine the suitability of any of the products mentioned for the user's application.

## One Year Limited Warranty

The products identified in this catalog shall be sold pursuant to the terms and conditions identified in the "Conditions of Sale" issued by Fuji Electric FA with each order confirmation.

Except to the extent otherwise provided for in the Conditions of Sale issued by Fuji Electric FA, Fuji Electric FA warrants that the Fuji Electric FA products identified in this catalog shall be free from significant defects in materials and workmanship provided the product has not been: 1) repaired or altered by others than Fuji Electric FA; 2) subjected to negligence, accident, misuse, or damage by circumstances beyond Fuji Electric FA's control; 3) improperly operated, maintained or stored; or 4) used in other than normal use or service. This warranty shall apply only to defects appearing within one (1) year from the date of shipment by Fuji Electric FA, and in such case, only if such defects are reported to Fuji Electric FA within thirty (30) days of discovery by purchaser. Such notice should be submitted in writing to Fuji Electric FA at 5-7, Nihonbashi Odemma-cho, Chuo-ku, Tokyo, Japan. The sole and exclusive remedy with respected to the above warranty whether such claim is based on warranty, contract, negligence, strict liability or any other theory, is limited to the repair or replacement of such product or, at Fuji Electric FA's option reimbursement by Fuji Electric FA of the purchase price paid to Fuji Electric FA for the particular product. Fuji Electric FA does not make any other representations or warranties, whether oral or in writing, expressed or implied, including but not limited to any warranty regarding merchantability or fitness for a particular purpose. Except as provided in the Conditions of Sale, no agent or representative of Fuji Electric FA is authorized to modify the terms of this warranty in writing or orally.

In no event shall Fuji Electric FA be liable for special, indirect or consequential damages, including but not limited to, loss of use of the product, other equipment, plant and power system which is installed with the product, loss of profits or revenues, cost of capital, or claims against the purchaser or user of the product by its customers resulting from the use of information, recommendations and descriptions contained herein. The purchaser agrees to pass on to its customers and users, in writing at the time inquiries and orders are received by buyer, Fuji Electric FA's warranty as set forth above.

## . Caution "Safety precautions"

- Operate (keep) in the environment specified in the operating instructions and manual. High temperature, high humidity, condensation, dust, corrosive gases, oil, organic solvents, excessive vibration or shock might cause electric shock, fire, erratic operation or failure.
- Follow the regulations of industrial wastes when the product is to be discarded.
- The products covered in this catalogs have not been designed or manufactured for use in equipment or systems which, in the event of failure, can lead to loss of human life.
- If you intend to use the products covered in this catalog for special applications, such as for nuclear energy control, aerospace, medical, or transportation, please consult our Fuji Electric FA agent.
- Be sure to provide protective measures when using the product covered in these catalogs in equipment which, in the event of failure, may lead to loss of human life or other grave results.
- Follow the directions of the operating instructions when mounting the product.

D\&C CATALOG DIGEST INDEX	
Individual catalog No.	LOW VOLTAGE PRODUCTS Up to 600 Volts
01	Magnetic Contactors and Starters Thermal Overload Relays, Solid-state Contactors
$02$	Manual Motor Starters and Contactors Combination Starters
$03$	Industrial Relays, Industrial Control Relays Annunciator Relay Unit, Time Delay Relays
04	Pushbuttons, Selector Switches, Pilot Lights Rotary Switches, Cam Type Selector Switches Panel Switches, Terminal Blocks, Testing Terminals
05	Limit Switches, Proximity Switches Photoelectric Switches
$06$	Molded Case Circuit Breakers   Air Circuit Breakers
$07$	Earth Leakage Circuit Breakers Earth Leakage Protective Relays
08	Circuit Protectors   Low Voltage Current-Limiting Fuses
09	Measuring Instruments, Arresters, Transducers   Power Factor Controllers   Power Monitoring Equipment (F-MPC)
10	AC Power Regulators Noise Suppression Filters Control Power Transformers
	HIGH VOLTAGE PRODUCTS Up to 36kV
11	Disconnecting Switches, Power Fuses Air Load Break Switches Instrument Transformers — VT, CT
$12$	Vacuum Circuit Breakers, Vacuum Magnetic Contactor Protective Relays

## INDIVIDUAL CATALOG 12

Fuji Electric FA Components \& Systems Co., Ltd.
5-7, Nihonbashi Odemma-cho, Chuo-ku, Tokyo, 103-0011, Japan
URL http://www.fujielectric.co.jp/fcs/eng


[^0]:    Note: $\square$ Installation: See pages 12/4 for HS series, 12/26 for Auto. V and 12/45 for Multi VCB

[^1]:    Notes: *1 Contact FUJI for the information concerning the 3 sec. rating of IEC.
    *2 If capacitor tripping system is required, connect a capacitor trip device VCB-T1A or VCB-T2A (optional accessory) to AC power supply.

[^2]:    * Provided fuse holder: K. See page 12/60 (Type number nomenclature)

[^3]:    VS: Vacuum contactor
    52: Auxiliary contact for vacuum contactor 52T: Tripping coil
    52C: Closing coil
    52Z: Anti-pumping relay
    IC: IC-control device
    LS1: Limit switch for interlock
    MCX: Auxiliary relay for closing
    PF: Power fuse (Optional accessories)
    SW: Power fuse blown indication contact VT: VT
    VTF: Fuse for VT
    BCT: Bushing type CT

