Air Circuit Breakers BT2 Series

Fuji Electric FA Components \& Systems Co., Ltd.

Contents

Features 3
Type number nomenclature 6
Specifications 7
Appearance 8
Intelligent controller (OCR) 9
Communication 14
Characteristics curve 16
Accessories 23
Technical data 28
Dimensions and mounting 30
Wiring diagram 54
Ordering form 62
Ordering notice 63
$■$ Selection guide

Series	BT2 series
Frame size	
No. of poles	1600, 2000, 2500, 4000, 6300
Installation	Available
Closing Mechanism	Available
Tripping Mechanism	Manual spring or motor spring
Protection function	Shunt trip, Under-voltage trip

Breaking Capacity

Icu is equal to Ics up to 120 kA at maximum and Icw is up to 100 kA at maximum under 400 VAC distribution.

Air Circuit Breakers

BT2 series

Features

- Compact size

BT2 series, Air Circuit Breakers, have five framesize and four physical dimension sizes.

■ Installation

The bus bar terminal of the BT2 series, Air Circuit Breakers, can be simply installed as follows:

- Horizontal connection
- Vertical connection
- Composite connection

■ Safety performance

BT2 series, Air Circuit Breakers, are reliable by the following aspects:

- Reliable assurance of the three positions:

Connected
Test
Separated
by the locked and automatically unlocked mechanism at the draw-out socket.

Clear indication of ready-for-switching-on to ensure safe manipulation and reliable operation.

More reliable safety protection with seconday terminals of protection grade IP30

\square Protection and selection

BT2 Series, Air Circuit Breakers, can implement selective interlock of ZSI Region to ensure comprehensive selection of various protection and reduce the copper bar's bearing of thermodynamic.

■ Intelligent controller (OCR)

Selecting OCR's, it can be classified into six types

Type	L25	M25	M26	H26	P25	P26
	Option	Standard	Option	Option	Option	Option
Pic						
Display/setting	Light columnar indication Dial setting by knob	LED digtal indication Consecutive parameter setting	LED digtal indication Consecutive parameter setting	LED digtal indication Consecutive parameter setting	LCD indication Consecutive parameter setting	LCD indication Consecutive parameter setting
Protection/ function						

Air Circuit Breakers
BT2 series
Type number nomenclature

Type number nomenclature

OCR type or Additional accessories - OCR type (note: M25 is standard), See page 9

Type	Code	Remarks
L25	L5A	
M25	$-($ None $)$	
H26	H6A	
P25	P5A	
	P5B	w harmonic analysis function
	P5C	w communication function
	P5D	w alarm of current-imbalance
P26	P6A	
	P6B	w harmonic analysis function
	P6C	w communication function
	P6D	w alarm of current-imbalance

Type	Code	Remarks
LED indicator of Voltage	C1	
Load-monitoring function	C2	
ZSI function (Zone selective interlock function)	C3	
Under voltage release	R1	Instananeous
	R2	Time delay
Switching OFF lock device	Q1	One lock and one key
	Q2	Two lock and one key
	Q3	Three lock and two key
Mechanical interlock device (Two sets of ACB's)	MW1	Steel lock interlock
	MB1	Link rod interlock (0,6m)
Mechanical interlock device (Three sets of ACB's)	MW2	Cable type interlock
	MB2	Pattern one of rod interlock
	MB3	Pattern two of rod interlock
	MB4	Pattern three of rod interlock
Current transformer for neutral line N connected externally	N1	1600AF L M - H Controller
	N1	1600AF P Controller
	N2	2000AF
	N3	2500AF
	N4	4000AF
	N6	6300AF
Electrical mechanism for the indication of draw out socket's position	D1	
Separator plate between phases	B3	3P
	B4	4P
Electrical module for indication of ready-for-switching-on	RFS	
"Button" Locking device	L	
Counter	CM	
Communication function choice of accessories	S1	Components of draw-out socket communication module
	S2	Ready-for-switching-on signal
	S3	Under-voltage signal
	S4	Fault-trip signal
DC power supply module	PD1	24VDC
	PD2	110VDC
	PD3	220VDC
AC power supply module	PA1	230VAC
	PA2	400VAC
Automatic transfer switch (ATS) (included automatic controller, connector and 1.8 m cable)	AS1	R type
	AS2	S type
	AS3	F type

Air Circuit Breakers
BT2 series
Specifications

■ Specifications

Frame size		1600A		2000A		2500A		4000A		6300A	
Basic type		BT2-1600 \square		BT2-2000 \square		BT2-2500 \square		BT2-4000 \square		BT2-6300 \square	
No. of poles		3	4	3	4	3	4	3	4	3	4
Rated current (A)		$\begin{aligned} & 200,400,630,800, \\ & 1000,1250,1600 \end{aligned}$		$\begin{aligned} & \hline 630,800,1000, \\ & 1250,1600,2000 \end{aligned}$		$\begin{aligned} & 1250,1600,2000, \\ & 2500 \end{aligned}$		$\begin{aligned} & 2000,2500,2900, \\ & 3200,3600,4000 \end{aligned}$		4000, 5000, 6300	
Rated current of the n (IN)	eutral pole	100\% In									
Rated insulation voltag	ge (Ui)	1000		1000		1000		1000		1000	
Rated operational volage (Ue)		690		690		690		690		690	
Rated ultimate short-circuit	690VAC *1	40		50		50		75		85	
breaking capacity (Icu kA, sym)	400VAC	50		80		85		100		120	
Rated service short-circuit	690VAC *1	25		50		50		75		85	
breaking capacity (lcs kA, sym)	400VAC	50		80		85		100		120	
Rated making current (kA, peak)	690VAC *1	84		105		105		165		187	
	400VAC	105		176		187		220		264	
Rated short time withstand current (lcw) (kA, rms)	690 VAC *1	25 (0.5s)		40 (1s)		50 (1s)		75 (1s)		85 (1s)	
	400VAC	42 (0.5s)		60 (1s)		65 (1s)		85 (1s)		100 (1s)	
Rated impulse withstand voltage (Uimp) (kV)		12		12		12		12		12	
Installations											
Fixed	P	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-	\bigcirc
Draw-out	X	-	\bigcirc	-	\bigcirc	\bigcirc	-	-	-	-	\bigcirc
Main circuit terminal connection											
Fixed	Horizontal	-	\bigcirc	-	-	\bigcirc	-	\bigcirc	-	-	\bigcirc
	Vertical	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	-	\bigcirc	\bigcirc
Draw-out	Horizontal	-	\bigcirc								
	Vertical	-	\bigcirc	\bigcirc	-	\bigcirc	-	\bigcirc	-	-	\bigcirc
Dimensions											
Fixed	W	254	324	362	457	362	457	414	527	782	1008
	H	320	320	395	395	395	395	395	395	395	395
	D	197	197	290	290	290	290	290	290	290	290
Draw-out	W	248	318	347	442	347	442	401	514	767	993
	H	351.5	351.5	438	438	438	438	438	438	475.5	475.5
	D	297	297	390	390	390	390	395	395	395	395

Note: *1 Cannot be used for an IT distribution system.

- Available

Air Circuit Breakers

BT2 series

Appearance

■ Appearance

- Fixed

<Common>

1: Name plate
2: Indications of energy-storage and energy-release
3: ON button
4: Manual energy-storage handle
5: Brand
6: Terminals of sencondary circuit (fixed)
7: Off lock mechanism
8: Release indication and resetting button
9: Inteligent controller (OCR)
10: OFF button
11: Indications of "ON" and "OFF"
12: Indication of ready-for-switching-on ("OK")

- Draw-out cradle

The cradle has the back plate for isolating the copper bar of the main circuit, which take the role of safety protection when the ACB is drawn out.

[^0]
- Draw-out

<For Draw-out>

13: "Unlock button" of the three positions
("Separated", "test" and "connected") *1,2
14: Safety padlock mechanism
15: Racking shaft operating hole
16: Racking shaft storage hole
17: Indications of the three position
("Separated", "test" and "connected")

Note: *1 "Separated": Indicates that main circuit and secondary circuit are both in isolation."Test": Indicates that main circuit is in isolation and secondary circuit is in connection. "Connected": Indicates that main circuit and secondary circuit are both in connection.
*2 The ACB can be automatically locked (racking shaft can not be turned at the point) when its main part is at the position of "separated","test" or "connected" by turning the racking shaft, and can be unlocked by pushing "unlock button" to the left side.

■ Intelligent controller (OCR)

Selecting OCR's, it can be classified into six types

Type	L25	M25	M26	H26	P25	P26
	Option	Standard	Option	Option	Option	Option
Overcurrent protection (Long-time, Short-time, insantaneous)	\bigcirc	-	\bigcirc	-	\bigcirc	\bigcirc
Ground-fault protection	-	-	-	-	-	\bigcirc
Load monitor function	-	0	\bigcirc	\bigcirc	\bigcirc	0
Indication	Light Columnar	LED	LED	LED	LCD	LCD
Power, electric energy, power-factor, frequency indication	-	0	0	\bigcirc	-	-
Alarm function (pre-trip alarm, overload alarm)	-	-	-	-	\bigcirc	\bigcirc
Test function	\bigcirc	-	-	-	-	-
Contact Welding indication	\bigcirc	\bigcirc	-	-	\bigcirc	-
Self-diagnosis function	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
MCR funciton	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Fault-memory funciton	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc
Current-imbalance indication	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Thermo-analogue function	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Harmonic analysis function	-	-	-	-	0	0
ZSI function	-	0	0	0	0	0
Communication function	-	-	-	\bigcirc	0	0

Note: Reprensents fundamental functions, O Represents selective functions, - Represent no such functions

\square Function

Over-current protection

- The over-current protection is composed of phase and neutral line protection (Four pole breaker and three pole breaker with current transformer linking externally to neutral N) from over-current.
- The parameters of current and time of phase line over-current protection can be set by the company in terms of the requirements of users (can be set by customers themselves); the parameters of current and time of neutral line over-current protection will be set according to the setting of the phase line, all these mainly divided into the following two situations:

Three pole breaker with the neutral connected eaternally

- To type L25, M26, H26 intelligent controller, when ordering the goods the neutral line setting current customers should have to confirm the protecting data, it has two type of 50% In and 100% In.
- To type P25, P26 intelligent controller, the customers can setup into four types from menu:turn off, 50\%In, 100\%In, 200\%In. When 200% In neutral line protecting (if it has a high triple frequency harmonic), the neutral line cross section should be double leg of a circuit cross section in the electrical power distribution system. But to BT2-6300 three circuit breaker, there is no neutral line protecting.

Four pole breaker

- To type L25, M25, M26, H26 intelligent controller, the customers should have to confirm the protecting data, it has two types of 50\%In and 100% In.
- To type P25, P26 intelligent controller, the customers can setup into three types from menu:turn off, 50\%In, 100\%In.

Overload protection

- Inverse long-time delay overload protection, and its setting current Ir1 can be adjusted.
- The delay time t 1 of overload long-time delay can be adjusted.
- The long-time delay overload characteristic of the type P25, P26, the curves can be adjusted. There have common type (I2t), uncommon inverse-time type (It), high-voltage fuse concert type (14t) can be adjusted, which can matching higher-up and lower-lever's overload protection'needs. The long-time delay overload characteristic ofthe type L25, M25, M26, H26, its running according to the common type (I2t) curves, current Ir1, time t1 can beadjusted.

Short-time short circuit protection (can be OFF)

- Inverse short-time delay short circuit protection (I2t ON), and its setting current Ir2 can be adjusted.
- Definite short-time delay short circuit protection (I2t OFF), and its setting current Ir2 can be adjusted.
- The delay time t 2 of short circuit short-time delay can be adjusted.

Instantaneous short circuit protection

- The setting current Ir3 of instantaneous short circuit (can be OFF) can be adjusted.

Air Circuit Breakers
 BT2 series
 Intelligent controller

Ground-fault protection

- Definite ground-fault protection, and its setting current Ir4 can be adjusted
- Delay time t4 can be adjusted
- Alarm but not break after being off

- TN-C, TN-C-S, or TN-S, power distribution system without additional current transformer of neutral

-TN-S, power distribution system, 4 poles

-TN-S, power distribution system, 3 poles

Load monitoring function

- To monitor the down stream load so as to ensure power supply of main system
- There are two patterns of load monitoring from which users can choose one. The setting value of load-monitoring current are $\mathrm{I}_{\mathrm{LC} 1}$ and $\mathrm{I}_{\mathrm{LC} 2}$, normally $\mathrm{I}_{\mathrm{LC} 1}$ is larger than or equal to $\mathrm{I}_{\mathrm{LC} 2}$
- Inverse characteristic of load-monitoring is the same of inverse long-time delay overload characteristic.

Acting characteristic of two kinds of ultimate setting load

Acting characteristic of ultimate setting value of load and reload

- Pattern 1: Two circuits of down stream load can be controlled. When the operating current of the main circuit rises over the setting value of $\mathrm{I}_{\mathrm{LC} 1}$ and $\mathrm{I}_{\mathrm{LC} 2}$, contact signal will be sent out after time durations of $\mathrm{t}_{\mathrm{C} 1}$ and $\mathrm{t}_{\mathrm{C} 2}$ repectively. Then this two circuits with monitored load are broken off by receiving the instructions from the intelligent controller.
- Pattern 2: Only one circuit with down stream load can be controlled. When the operating current of the main circuit rises over the setting value of $\mathrm{I}_{\mathrm{LC} 1}$, contact signal will be sent out after time duration of $\mathrm{t}_{\mathrm{c} 1}$, and this circuit is broken off by receiving the instructions from the intelligent controller. If the operating current of the main circuit decreases lower than the setting value of $\mathrm{I}_{\mathrm{L} 2}$ after this circuit is broken off, the signal will be sent out again after time duration of $\mathrm{t}_{\mathrm{c} 2}$ for the open loading circuit to be closed (reloaded) and so the power supply of this circuit is restored.
- Load monitoring signals"(1)" and "(2)" corresponding to $\mathrm{I}_{\text {LC } 1}$ and $\mathrm{I}_{\mathrm{LC} 2}$ respectively are transmitted into contact signals via the wiring terminals 13,14 and 15,16 of the secondary circuit. There will be LED indication at the time when signals are transmitted. (The load monitoring signals from the intelligent controller will be cut off in half second after the signal of contact closing is transmitted, and the capacity of contact is AC230V 5A)

■ Indication and measurement function

- For L25, M25, M26 and H26

Item	Type of OCR's	Display	Content	Indication and measurement range	Accuracy
Current	L25	Light columnar Indication	$\begin{aligned} & \mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}, \mathrm{I}_{\mathrm{N}} \\ & \mathrm{I}_{1}, \mathrm{I}_{2}, I_{3}, \mathrm{I}_{\mathrm{N}}, \mathrm{I}_{\max } \\ & \mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}, \mathrm{I}_{\mathrm{N}}, \mathrm{I}_{\mathrm{G}}, \mathrm{I}_{\max } \end{aligned}$	(0.1 In to 2ln) A	$\pm 5 \%$
	M25 M26, H26	LED			
Voltage	M25, M26 as optional H26 as standard	LED	$\mathrm{U}_{12}, \mathrm{U}_{23}, \mathrm{U}_{31}, \mathrm{U}_{\text {min }}$	30 V to 690V	$\pm 3 \%$

- For P25 and P26

Item	Display	Content	Indication and measurement range	Accuracy
Current	LCD	$\begin{aligned} & \mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}, \mathrm{I}_{\mathrm{N}} \\ & \mathrm{I}_{\mathrm{G}} \end{aligned}$	(0.1 In to 2In) A 0.1 In to 2000A	$\begin{aligned} & \pm 1.5 \% \\ & \pm 2.5 \% \end{aligned}$
Voltage		Line Voltage: $\mathrm{U}_{12}, \mathrm{U}_{23}, \mathrm{U}_{31}$ Phase Voltage: $\mathrm{U}_{1 \mathrm{~N}}, \mathrm{U}_{2 \mathrm{~N}}, \mathrm{U}_{3 \mathrm{~N}}$	30 V to 690V	$\pm 0.5 \%$
Power		Three-phase active power Three-phase reactive power Three-phase apparent power	$\begin{aligned} & -120 \mathrm{MW} \text { to }+120 \mathrm{MW} \\ & -120 \mathrm{Mvar} \text { to }+120 \mathrm{Mvar} \\ & -120 \mathrm{MVA} \text { to }+120 \mathrm{MVA} \end{aligned}$	$\pm 2.5 \%$
Power-factor		Power-factor	-1.00 to $+1,00$	$\pm 2.5 \%$
Electric energy		Three-phase active electric energy Three-phase reactive electric energy Three-phase apparent electric energy	$-10^{10} \mathrm{GWh}$ to $+10^{10} \mathrm{GWh}$ -10^{10} Gvarh to $+10^{10} \mathrm{Gvarh}$ $-10^{10} \mathrm{G}$ VAh to $+10^{10} \mathrm{G}$ VAh	$\pm 2.5 \%$
Frequency		f	45 to 65Hz	$\pm 0.1 \mathrm{~Hz}$
Fundamental current		$\mathrm{I}_{1-1}, \mathrm{I}_{2-1}, \mathrm{I}_{3-1}, \mathrm{I}_{\mathrm{N}-1}$	(0.1 In to 2ln) A	$\pm 1.5 \%$
Fundamental line voltage		$\mathrm{U}_{12-1}, \mathrm{U}_{23-1}, \mathrm{U}_{31-1}$	30 V to 690V	$\pm 0.5 \%$
Fundamental phase voltage		$\mathrm{U}_{1 \mathrm{~N}-1}, \mathrm{U}_{2 \mathrm{~N}-1}, \mathrm{U}_{3 \mathrm{~N}-1}$		
Fundamental power		$\begin{aligned} & \text { P1 } \\ & \text { Q1 } \\ & \text { S1 } \end{aligned}$	$\begin{aligned} & \hline-120 \mathrm{MW} \text { to }+120 \mathrm{MW} \\ & -120 \mathrm{Mvar} \text { to }+120 \mathrm{Mvar} \\ & -120 \mathrm{MVA} \text { to }+120 \mathrm{MVA} \end{aligned}$	$\pm 2.5 \%$
Harmonic ratio		Current Voltage	0 to 1000\%	$\pm 5 \%$
Total harmonic distortion (THD)		Current Voltage		

■ Alarm and fault functions

Over-current alarm	Type L25	Corresponding LED on the panel will be "ON"	Alarm and release indication lights will be on after the circuit breaker's being overloaded or released (yellow or red)
	Type M25		After the circuit breaker's being released by long-time delay overload, short-time delay short circuit and instantaneous short circuit, indication lights of corresponding alarm will be on.
	Type M26, H26		After the circuit breaker's being released by long-time delay overload, short-time delay short circuit, instantaneous short circuit and ground-fault, indication lights of corresponding alarm will be on.
	Type P25, P26		After the circuit breaker's being released by long-time delay overload, short-time delay short circuit and instantaneous short circuit, indication lights of corresponding alarm will be on.
Fault indication	Type L25	Corresponding LED on the panel will be "ON"	After the circuit breaker's being released by long-time delay overload, short-time short circuit and instantaneous short circuit, indication lights of corresponding fault type will be on.
	Type M25		After the circuit breaker's being released by long-time delay overload, short-time short circuit and instantaneous short circuit, indication lights of corresponding fault type will be on.
	Type M26, H26		After the circuit breaker's being released by long-time delay overload, short-time delay short circuit, instantaneous short circuit, instantaneous short circuit and ground-fault, indication lights of corresponding fault type will be on.
	Type P25, P26		After the circuit breaker's being released by long-time delay overload, short-time delay short circuit and instantaneous short circuit, indication lights of corresponding alarm will be on.
Indication of fault phase, current and time	Type M25, M26, H26	Indication	Indication of faulty phase, breaking value of fault current and breaking time
	Type P25, P26	Indication	It can indicate the latest ten times fault categories and occurrence time, faulty phase, breaking value of fault current and breaking time.

Air Circuit Breakers
BT2 series
Intelligent controller

■ Test functions

Panel button	Type L25, M25, M26, H26, P25, P26	Release	Inspeciton of T-I characteristic of the OCR and the conditions of operating mechanism
	Type M25, M26, H26, P25, P26	Non-release	Inspeciton of T-I characteristic of the OCR

- Contact wearing indication (for M25, M26, H26, P25 and P26) The intelligent controller has the function of contact wearing indication. Accordingly, the percentage of the equivalent to wearing times of main contact to electrical life-span times of the circuit breaker can be indicated by pushing the button of "wearing indication".
- Self-diagnosis function (for M25, M26, H26, P25 and P26)

When the microprocessor of the intelligent controller breaks down or the ambient temperature of the microprocessor rises over $80^{\circ} \mathrm{C} \pm 5$, alarm signals can be sent out immediately.

- MCR function

When the circuit breaker is on or the controller is initially electrified, the circuit breaker would trip instantly if short-time short circuit fault occurred.

- Fault-memory function (for M25, M26, H26, P25 and P26)

The types and phases of fault, value of faulty current and breaking time would be indicated on the intelligent controller if the circuit breaker broke off as a result of faults.

- Current disequilibrium display (selective function for P25 and P26) The intelligent controller can sent out and display, when the three phases current disequilibrium level reached the setting value ($20 \%-80 \%$).

Note: the three phases current disequilibrium $=\frac{\operatorname{Imax}-\operatorname{Imin}}{\operatorname{Imax}} \times 100 \%$

- Harmonic analysis function (for P25 and P26) P25 or P26 intelligent controller with harmonic analysis function can measure fundamental current, fundamental line voltage, fundamental phase voltage, fundamental power, odd harmonic current ratio (HRIh) from the third to thirty-first, harmonic voltage ratio (HRUh), total harmonic distortion of current (THDi, thdi) and total harmonic distortion of voltage (THDu, thdu).
- Harmonic ratio (HR)

The ratio of RMS of hth harmonic component in the periodical alternating quantum to RMS of fundamental component (express by percent).

- Harmonic current ratio of hth expresses HRI $_{\mathrm{h}}$.
$H R I_{h}=\frac{I_{h}}{I_{1-1}} \times 100 \%$
Note: In-harmonic current of hth of phase A (RMS)
- Harmonic voltage ratio of hth expresses $\mathrm{HRU}_{\mathrm{h}}$.
$H R U_{h}=\frac{U_{h}}{U_{12-1}} \times 100 \%$
Note: Uh -harmonic line voltage of hth between phase A and B.
- Total harmonic distortion (THD)
- The ratio of harmonic content in the periodical alternating quantum to RMS of fundamental component (THD)(express by percent).
$\mathrm{THD}_{\mathrm{i}}=\frac{\sqrt{\sum_{1-2}^{\infty} I_{1}^{2}}}{1_{1-1}} \times 100 \%$
$\mathrm{THD}_{\mathrm{u}}=\frac{\sqrt{\sum_{k-2}^{\infty} U_{1}^{2}}}{\mathrm{U}_{12-1}} \times 100 \%$
Note: I In-harmonic current of hth of phase A (RMS)
U_{h}-harmonic line voltage of hth between phase A and B (RMS)
- The ratio of harmonic component in the periodical alternating quantum to RMS of periodical alternating quantum(thd) (express by percent).
thd $=\frac{\sqrt{\sum_{i=2}^{\infty} l_{1}^{2}}}{\left.\right|_{1-1}} \times 100 \%$
thd $_{u}=\frac{\sqrt{\sum_{\sum_{-1}}^{\infty} U_{1}^{2}}}{U_{12-1}} \times 100 \%$
Ntoe: I_{n}-harmonic current of hth of phase A (RMS)
U_{h}-harmonic line voltage of hth between phase A and B (RMS)

■ Zone selective interlock

Zone selective interlock (ZSI function) (for M25, M26, H26, P25 and P26, optional)

Note: $21,22,23,24$ serve as the wiring teminals of secondary circuit.

When pieces of circuit breakers are linked together up and down, zone selective interlock (ZSI) can ensure fully-selective protection of circuit breakers at higher or lower level so as to reduce the range of action by fault and the breaking time of circuit breakers. This function serves for short-time delay short circuit ($\left.I^{2} t ~ O F F\right)$ and ground-fault protection of circuit breakers.

As the sketch shown above, control lines can interlock with pieces of circuit breakers.

After detecting the fault, the intelligent controller (zone 2) will send out a signal to circuit breakers (zone1) at higher level and check whether the signal of circuit breakers (zone 3) at lower level arrives. If circuit breakers at lower level send out a signal, the circuit breaker will be on at the time duration of release delay; if circuit breakers at lower level don't send out a signal, the circuit breaker will break off instantly no matter whether the release has the protection of delay.

Note: The end 23 and 24 should be shortcircuited.

Air Circuit Breakers
 BT2 series
 Communication

Communicative

To achieve the function of "four kinds of remote operation" at long distance by communication interface of the circuit breaker, namely, remote control, remote communication, remote adjustment and remote detection.

- Communication protocol : The application of Modbus-RTU mode
- Communication interface
- Standard interface: RS-485.
- Baud rate: 19200bps (in favour of 1200, 2400, 4800, 9600, 38400bps)
- Communication address:1-119.
- Byte format: First bit as start bit, eighth bit as data bit, second bit as stop bit, even check (in favour of non-check, odd check .)
- Network characteristic
- Twisted-pair shielded cables serve as communication lines.
- One line can link up 32 pieces of communicative circuit breakers at the same time (16 pieces of circuit breakers with components of draw-out socket communication module).
- Wiring distance is 1200 m at maximum but the distance of communication can be extended by equipping with repeaters additionally.

■ Communication data

- Real-time current, voltage fundamental current, fundamental voltage, power, power factor, electric energy, harmonic current or voltage ratio and total distortion of current or voltage.
- State data of circuit breakers such as alarm, fault, energy-storage, undervoltage, ready-for-switching-on, and the positions of switching-on and switching-off etc.
- The position of main body of the circuit breaker (components of communication module of draw-out socket for BT2 need to be purchased).
- The fetching and modification of the setting values of circuit breakers.
- Recorded data of fault last time.
- Outline data such as serial numbers and the type etc of circuit breakers.
- Long-distance operation if switching-on and switching-off.
- Circuit breakers can be switched on or off in the long-distance.
- Wiring terminals for communication.

Terminal	Signal	Function
8	DATA $+(\mathrm{A}+)$	Receive/transmit data
10	DATA-(B-)	Receive/transmit data
12	SH	In connection with shielded layer of communication line

- Communication cable

Standard twisted-pair shielded cable
Note: please use the type of communication cable with the shielding layer and approach to circuits with strong electricity should be avoided as far as possible when wiring in the cabinet.

Colour	Signal	Funation
Blue	DATA +	Receive/transmit data
White	DATA-	Receive/transmit data
Shielding layer	GND	Grounding

As the above diagram shows, a group of twisted-pair lines in the standard communication cable is employed as the communication line of 485 and the sheilding layer is grounded. The actual practice should be possibly different such as the application of the colour of the twisted-pair line. Users could define the ways of cable's usage by themselves but the definition of the signal of each line in the cable should be made clear in advance.

■ Linking diagram of communication system

Note: As the accessory of selective purchase, the draw-out socket
communication module should be selected into use when users need read
the location of main body in the long distance by the choice of draw-out circuit breakers.

Air Circuit Breakers
 BT2 series
 Characteristic curve

- Characteristic curve of general $\mathrm{I}^{2} \mathrm{t}$

- BT2-1600~BT2-6300

T/I (time / current) curve of type L25 intelligent controllers (OCR)

- T/I (time / current) curve of type M25, M26, H26, P25 and P26 intelligent controllers (OCR)

Air Circuit Breakers
 BT2 series
 Characteristic curve

■ Characteristic curve of inverse time delay special It

- T/I (time / current) curve of type 25 and 26 intelligent controllers (OCR)

■ Characteristic curve of high-voltage fuse $\mathrm{I}^{4} \mathrm{t}$

- T/I (time / current) curve of type 25 and 26 intelligent controllers (OCR)

Air Circuit Breakers
 BT2 series
 Characteristic curve

- T/I (time / current) curve of type M26, H26 and P26 intelligent controllers (OCR) for ground-fault protection

- T/I (time / current) curve of type M25, M26, H26, P25 and P26 intelligent controllers (OCR) for load-monitoring pattern one.

Air Circuit Breakers
 BT2 series
 Characteristic curve

- T/I (time / current) curve of type M25, M26, H26, P25 and P26 intelligent controllers (OCR) for load-monitoring pattern two.

■ Accessories

- Supplied accessories

Following accessories are come with each ACB's as standard supplied.

- Shunt trip device

To break the ACB by remote control.

Rated voltage of control power supply	400VAC	230 VAC	220 VDC	110 VDC	
Operating voltage (V)					
Instantaneous current (A)	0.7	1.3	1.3	2.4	
Breaking time (ms)					

- Charge Coil

After the ACB's ends up its energy storage, the closing electromagnet will make the energy storing spring to release its energy instantly, then to close the count ACB quickly.

Rated voltage of control power supply	400VAC	230 VAC	220 VDC	110 VDC
Operating voltage (V)	$(0.85$ to 1.1$)$ Us			
Instantaneous current (A)	0.7	1.3	1.3	2.4
Switching-on time (ms)	No more than 70			

- Drive unit

ACB has the functions of drive energy storage and automatic energy-restoring.
The energy storage can also be done manually.

Rated voltage of control power supply	400VAC	230VAC	220VDC	110VDC
Operating voltage (V)	$(0.85$ to 1.1) Us			
Power consumption	192 VA	192 W		
Energy storage time (s)	No more than 5			

- Auxiliary Switches

Rated voltage (V)		Conventional thermal current (A)	Rated capacity
AC	230	6	300 VA
	400		
			60 W
	220		

Note: Note: For the standard type of auxiliary switch, there are four groups of changeover contacts; for the special type of auxiliary switch, there are four pieces of normally-opened contacts (NO) and four pieces of normallyclose contacts (NC), or 6 pieces of NO and 2 pieces of NC, or 2 pieces of NO and 6 pieces of NC.

- Safety padlock mechanism at the position of "separated" When the draw-out circuit breaker indicates the position of "separated", the locking stick can be locked with padlock after being pulled out so that the rocker of the circuit breaker can not be turned to the position of "test" or "connected". Padlock should be provided by users themselves.

Air Circuit Breakers
 BT2 series
 Accessories

- Optional accessories

- Special power module

When the power voltage of BT2-1600 circuit breaker's intelligent control is AC230 or AC400V, it can be transformed into DC24 by this power module for power module for power supply of the OCR.
Note: The input of voltage to 1 and 2 terminals of the secondary circuit must be DC24V.
This module is installed by getting stuck into the standard slideway with 35 mm in width inside the switchgear cabinet.

- DC24V power module

When the power voltage of BT2-1600 circuit breaker's intelligent control is DC24V, it can be transformed into DC24V by this power module for power supply of the OCR. This module is installed by getting stuck into the standard slideway with 35 mm in width inside the switchgear cabinet.

- DC power supply module

When power supply of the secondary circuit is DC220V, 110 V , it should be transformed into DC24V by this module for power supply of the OCR.

- Under-voltage release

The under-voltage release consists of release coil and control unit.
The under-voltage release works in two ways: operating instantaneously and operating in time delay. There are four specifications of time delay for the undervoltage time delay release: $0.5 \mathrm{~s}, 1 \mathrm{~s}, 2 \mathrm{~s}$ and 3 s . Users should consult with the manufacturer in the light of their order about special time-delay specifications as from 3s and above up to 9 s . The time delay accurary is $\pm 10 \%$.
The Under-voltage release of BT2-1600 must be combined with the time-delay module which is installed by getting stuck into the standard slideway with 35 mm in width. The module input terminals connect with main circuit,the output terminals connect with terminal 31, 32 of the breaker.

- Choice of communicate accessories

- Components of draw-out socket communication module
- The components of draw-out socket communication. module consists of the draw-out socket communication module outside of the circuit breaker and the draw-out socket communication parts inside of the circuit breaker. The draw-out socket communication parts are installed inside of the draw-out socket to provide the status signals of such three positions as "separated", "test"and "connected"of the main body of the draw-out circuit breaker and the drawout socket. The draw-out socket communication module, which can provide the function of reading the address of the circuit breaker and display the status indication of the main body and three positions of the draw-out socket etc, is installed by getting stuck into the standard slideway with 35 mm in width inside the switchgear cabinet. The two parts of the draw-out socket communication module are connected with soft conducting lines.
- Ready-for-switching-on signal

You can achieve the information through the uplever device that the circuit breaker is ready for switching-on.

- Under-voltage signal

You can achieve the information through the upper device that the circuit breaker is tripping operation under-voltage.

- Fault-trip signal

You can achieve the information through the upper device that the circuit breaker is tripping operation because of over loading short circuit or earth protection of the connection and devices.

- Choice of mechanical interlock accessories

- Two sets of circuit breakers put horizontally and interlocked with steel cable or stacked and interlocked with connecting rods
(the style of interlock between two sets of circuit breakers with connecting rods and aperture dimensions of their bases see the counterpart of three sets of circuit breakers)

Wiring diagram Possible operation pattern

- Three sets of circuit breakers stacked and interlocked with connecting rods or three sets of circuit breakers put horizontally and interlocked with steel cable (without BT2-
1600).

Wiring diagram Possible operation Pattern
Pattern one: three sets of power supply can only

Air Circuit Breakers
 BT2 series
 Accessories

- Steel cable interlocked

The style of interlock of three circuit breakers see the style of interlock between two sets of circuit breakers. The maximal distance of two circuit breakers is 2 m .

Wiring diagram Possible operation pattern
Pattern three:Two sets of power supply plus a piece of coupling busbar

BT2-2000 and above

- Electrical mechanism for the indication of draw-out socket's position
- When the main body of the draw-out circuit breaker and the draw-out socket are at the position of "separated", "test" and "connected" respectively, three electrical mechanisms for the indication of draw-out socket's location can output the electrical signals corresponding with three positions above respectively. These mechanisms are installed inside the draw-out socket.
- Characteristics

Rated working voltage	Ue (V)	230
Convertional thermal current	Ith (A)	10
Rated working current	Ie (A)	1.5

- Electrical module for indication of ready-for-switchingon
- This electrical module indicates that the ciruit breaker is ready for switching-on.
- Characteristics

Rated working voltage	Ue (V)	230
Convertional thermal current	Ith (A)	10
Rated working current	Ie (A)	1.5

- Current transformer with neutral line \mathbf{N} connected

 externally- This current transformer, which is used together with circuit breakers with three poles in the power distribution system of TN-S, installed in the neutral line N with 2 m at maximum far from the installation point.
- Characteristics

Rated working voltage	Ue (V)	AC400	AC230
Acting voltage	(V)	$(0.35 \sim 0.7)$ Us	
Reliable switching voltage	(V)	$(0.85 \sim 1.1)$ Us	
Reliable switching resistant voltage	(V)	$\leq 0.35 \mathrm{Us}$	
Power consumption	12 VA		

Note: In the electrified metworks where thunder and rain often happens or whose power supply is not stable, under-voltage release with time delay is highly recommended to protect the circuit breader from releasing due to transient voltage-lowering. Generally, delay time, which is selective by users, is 0.5 s , $1 \mathrm{~s}, 2 \mathrm{~s}$ and 3 s .

Air Circuit Breakers
 BT2 series
 Accessories

- "Break"lock mechanism
- "Break"lock mechanism can lock the "OFF" button of the circuit breaker on the pressed position. As a result, the circuit breaker can not be switched on.
- After this lock mechanism was chosen by users, the manufacturer would provide lock and key.
- One set of circuit breaker is outfitted with one lock and one key.
- Two sets of circuit breakers are outfitted with two same locks and one key.
- Three sets of circuit breakers are outfitted with three same locks and two keys.
- "Button"locking device
- When installed "Button"locking device, it can prevented somebody from operating button of switching-on or switching off by mistake.
- Padlock should be provided by users themselves.
- Counter
- The counter can count mechanical operation times accumulatively, which makes users be clear at a glance.
- Separator plate between phases
- Separator plates between phases which strengthen insulation between bus-bars are optional and will be equipped as needed by users.

Air Circuit Breakers

BT2 series
Technical data

■ Power consumption and derating coefficient

- Power consumption (Environment temperature $+40^{\circ} \mathrm{C}$)

Power consumption is the overall consumption measured under with the circuit breaker is electrified with current below frame current.

Type	Three poles/four poles (W)	
	Fixed type	Draw-out type
BT2-1600	152	408
BT2-2000	203.6	382.8
BT2-2500	356.8	823.4
BT2-4000	648.96	897.6
BT2-6300	1050.1	1200.2

- Derating coefficient

The following table shows continual current-loading capacity of circuit breakers at different ambient environment temperature and under the conditions of the satisfaction of conventional heating in IEC60947-2

Ambient Environment temperature		$+40^{\circ} \mathrm{C}$	$+45^{\circ} \mathrm{C}$	$+50^{\circ} \mathrm{C}$	$+55^{\circ} \mathrm{C}$	$+60^{\circ} \mathrm{C}$
Continual current-loading capacity	Inm=1600A	1 Inm	0.991 nm	0.96 lnm	0.90 Inm	0.87 Inm
	Inm=2000A	1 Inm	0.97 Inm	0.91 lnm	0.87 Inm	0.82 lnm
	Inm=2500A	1 Inm	0.96 Inm	0.90 lnm	0.86 Inm	0.80 lnm
	Inm=4000A	1 Inm	0.95 Inm	0.89 lnm	0.85 Inm	0.78 lnm
	Inm=6300A	1 Inm	0.931 nm	0.87Inm	0.82Inm	0.75 Inm

■ Derating for high-elevation

If elevation exceeds work environment 2000 m , electric property of circuit breaker can correct according to following table:

elevation (m)	2000	3000	4000	5000
Power-frequency withstand voltage (V)	3500	3150	2500	2000
Correction factor of operational current	1	0.93	0.88	0.82
Correction factor of short-circuit breaking capacity	1	0.83	0.71	0.63

\square Reference table of main circuit wiring copper bar for draw-out circuit breaders

Rated frame current (A)	Rated current (A)	Specifications of copper bars	
		Number	Size (mm×mm)
1600	200	1	20×5
	400	1	50×5
	630	2	40×5
	800	2	50×5
	1000	3	40×5
	1250	4	40×5
	1600	2	50×10
2000	630	2	50×5
	800	2	60×5
	1000	2	60×5
	1250	3	60×5
	1600	2	60×10
	2000	3	60×10
2500	1250	3	60×5
	1600	2	60×10
	2000	3	60×10
	2500	4	60×10
4000	2000	3	100×5
	2500	4	100×5
	2900	3	100×10
	3200	4	100×10
	3600	4	100×10
	4000	5	100×10
6300	4000	5	100×10
	5000	6	100×10
	6300	8	100×10

[^1] temperature of $40^{\circ} \mathrm{C}$ and satisfy conventional heating in IEC60947-2.

Air Circuit Breakers
 BT2 series
 Dimensions and mounting

\square Dimensions and mounting, mm

- BT2-1600 Air Circuit Breaker with three poles (fixed type)

Current specifications	L (mm)
$800 A, 1000 A, 1250 A, 1600 A$	15
$200 A, 400 A, 630 A$	10

Horizontal (Rear connection)

Aperture dimensions of the back plate at the time of hanging type installation

Direction A

Vertical (Rear connection)

Direction C

■ Dimensions and mounting, mm

- BT2-1600 Air Circuit Breaker with four poles (fixed type)

Current specifications	L (mm)
$800 \mathrm{~A}, 1000 \mathrm{~A}, 1250 \mathrm{~A}, 1600 \mathrm{~A}$	15
$200 \mathrm{~A}, 400 \mathrm{~A}, 630 \mathrm{~A}$	10

Outside of the cabinet door

Horizontal (Rear connection)

Aperture dimensions of the back plate at the time of hanging type installation

Direction A

Outside of the cabinet door

Vertical (Rear connection)

Direction C

N pole

Air Circuit Breakers
 BT2 series
 Dimensions and mounting

■ Dimensions and mounting, mm

- BT2-1600 Air Circuit Breaker with three poles (draw-out type)

Current specifications	L (mm)
$800 \mathrm{~A}, 1000 \mathrm{~A}, 1250 \mathrm{~A}, 1600 \mathrm{~A}$	15
$200 \mathrm{~A}, 400 \mathrm{~A}, 630 \mathrm{~A}$	10

Direction C

■ Dimensions and mounting, mm

- BT2-1600 Air Circuit Breaker with four poles (draw-out type)

Current specifications	L (mm)
$800 \mathrm{~A}, 1000 \mathrm{~A}, 1250 \mathrm{~A}, 1600 \mathrm{~A}$	15
$200 \mathrm{~A}, 400 \mathrm{~A}, 630 \mathrm{~A}$	10

Direction C

Air Circuit Breakers
 BT2 series
 Dimensions and mounting

■ Dimensions and mounting, mm

- BT2-2000 Air Circuit Breaker with three poles (fixed type)

Current specifications	L (mm)	A (mm)	W (mm)	B (mm)
2000A	20	269	20	13
630A, 800A, 1000A, 1250A, 1600A	15	264	15	3

Horizontal (Rear connection)

\square Dimensions and mounting, mm

- BT2-2000 Air Circuit Breaker with four poles (fixed type)

Current specifications	L (mm)	A (mm)	W (mm)	B (mm)
2000A	20	269	20	13
630A, 800A, 1000A, $1250 \mathrm{~A}, 1600 \mathrm{~A}$	15	264	15	3

Direction A

Outside of the cabinet door

Horizontal (Rear connection)

Direction C

Outside of the cabinet door

Air Circuit Breakers
 BT2 series
 Dimensions and mounting

■ Dimensions and mounting, mm

- BT2-2000 Air Circuit Breaker with three poles (draw-out type)

Current specifications	L (mm)	H (mm)	A (mm)
2000A	20	20	30
630A, 800A, 1000A, 1250A, 1600A	15	15	25

Direction C

\square Dimensions and mounting, mm

- BT2-2000 Air Circuit Breaker with four poles (draw-out type)

Current specifications	L (mm)	H (mm)	A (mm)
2000 A	20	20	30
630A, 800A, 1000A, 1250A, 1600A	15	15	25

Direction A

Direction C

Air Circuit Breakers
 BT2 series
 Dimensions and mounting

■ Dimensions and mounting, mm

- BT2-2500 Air Circuit Breaker with three poles (fixed type)

Current specifications	L (mm)	C (mm)
$2000 \mathrm{~A}, 2500 \mathrm{~A}$	20	132
$1250 \mathrm{~A}, 1600 \mathrm{~A}$	15	134.5

Horizontal (Rear connection)

- BT2-2500 Air Circuit Breaker with four poles (fixed type)

Current specifications	L (mm)	C (mm)
2000A, 2500A	20	132
$1250 \mathrm{~A}, 1600 \mathrm{~A}$	15	134.5

\square Dimensions and mounting, mm

- BT2-2500 Air Circuit Breaker with three poles (draw-out type)

Current specifications	L (mm)
$2000 \mathrm{~A}, 2500 \mathrm{~A}$	20
$1250 \mathrm{~A}, 1600 \mathrm{~A}$	15

Direction A

Direction C

Air Circuit Breakers
 BT2 series
 Dimensions and mounting

■ Dimensions and mounting, mm

- BT2-2500 Air Circuit Breaker with four poles (draw-out type)

Current specifications	L (mm)
$2000 \mathrm{~A}, 2500 \mathrm{~A}$	20
$1250 \mathrm{~A}, 1600 \mathrm{~A}$	15

Direction A

Direction C

N pole

■ Dimensions and mounting, mm

- BT2-4000 Air Circuit Breaker with three poles (fixed type)

Horizontal (Rear connection)

- BT2-4000 Air Circuit Breaker with four poles (fixed type)

Air Circuit Breakers
 BT2 series
 Dimensions and mounting

\square Dimensions and mounting, mm

- BT2-4000 Air Circuit Breaker with three poles (draw-out type)

Direction C

\square Dimensions and mounting, mm

- BT2-4000 Air Circuit Breaker with four poles (draw-out type)

Air Circuit Breakers
 BT2 series
 Dimensions and mounting

■ Dimensions and mounting, mm

- BT2-6300 Air Circuit Breaker with three poles (fixed type)

- BT2-6300 Air Circuit Breaker with four poles (fixed type)

Outside of the cabinet door

Horizontal (Rear connection)

Current specifications: $\ln =4000 \mathrm{~A}, 5000 \mathrm{~A}$

Direction C

Current specifications: In $=4000 \mathrm{~A}, 5000 \mathrm{~A}, 6300 \mathrm{~A}$

Air Circuit Breakers
 BT2 series
 Dimensions and mounting

■ Dimensions and mounting, mm

- BT2-6300 Air Circuit Breaker with four poles (draw-out type)

Direction A

Current specifications:
$\mathrm{ln}=4000 \mathrm{~A}, 5000 \mathrm{~A}$

Direction C

Current specifications:
In=4000A, 5000A, 6300A

Air Circuit Breakers
 BT2 series
 Dimensions and mounting

■ Door frame dimensions, mm

- BT2-1600 door frame

BT2-1600 Air Circuit Breakers with three poles (fixed type) The drawing of aperture dimensions for mounting cover of door frame
Distance from the panel center of the circuit breaker to the right hinge of cabinet door should be at least 227 mm

BT2-1600 Air Circuit Breakers with three poles (draw-out) The drawing of aperture dimensions for mounting cover of door frame
Distance from the panel center of the circuit breaker to the right hinge of cabinet door should be at least 227 mm

BT2-1600 Air Circuit Breakers with four poles (fixed type) The drawing of aperture dimensions for mounting front cover of door frame
Distance from the panel center of the Circuit Breaker to the right hinge of cabinet door should be at least 262 mm

BT2-1600 Air Circuit Breakers with four poles (draw-out) The drawing of aperture dimensions for mounting front cover of door frame
Distance from the panel center of the Circuit Breaker to the right hinge of cabinet door should be at least 262 mm

Air Circuit Breakers
 BT2 series
 Dimensions and mounting

\square Door frame dimensions, mm

- Aperture Dimension of BT2-2000 door frame

BT2-2000 Air Circuit Breakers with three poles (fixed)
The drawing of Aperture Dimensions for mounting front cover of cabunet door
Distance from the panel center of the circuit breaker to the right hinge of cabinet door should be at least 256 mm

BT2-2000 Air Circuit Breakers with three poles (draw-out)
The drawing of Aperture Dimensions for mounting front cover of cabubet door
Distance from the panel center of the circuit breaker to the right hinge of cabinet door should be at least 256 mm

BT2-2000 Air Circuit Breakers with four poles (fixed)
The drawing of Aperture Dimensions for mounting front cover of cabinut door
Distance from the panel center of the circuit breaker to the right hinge of cabinet door should be at least 303.5 mm

BT2-2000 Air Circuit Breakers with four poles (draw-out) The drawing of Aperture Dimensions for mounting front cover of cabinut door
Distance from the panel center of the circuit breaker to the right hinge of cabinet door should be at least 303.5 mm

Air Circuit Breakers
 BT2 series
 Dimensions and mounting

■ Door frame dimensions, mm

- Aperture Dimension of BT2-2500 door frame

BT2-2500 Air Circuit Breakers with three poles (fixed)
The drawing of Aperture Dimensions for mounting cover of door frame
Distance from the panel center of the circuit breaker to the right hinge of cabinet door should be at least 256 mm

BT2-2500 Air Circuit Breakers with three poles (draw-out) The drawing of Aperture Dimensions for mounting cover of door frame
Distance from the panel center of the circuit breaker to the right hinge of cabinet door should be at least 256 mm

BT2-2500 Air Circuit Breakers with four poles (fixed)
The drawing of Aperture Dimensions for mounting cover of door frame
Distance from the panel center of the circuit breaker to the right hinge of cabinet door should be at least 303.5 mm

BT2-2500 Air Circuit Breakers with four poles (draw-out) The drawing of Aperture Dimensions for mounting cover of door frame
Distance from the panel center of the circuit breaker to the right hinge of cabinet door should be at least 303.5 mm

Air Circuit Breakers
 BT2 series
 Dimensions and mounting

\square Door frame dimensions, mm

- Aperture Dimension of BT2-4000 door frame

BT2-4000 Air Circuit Breakers with three poles (fixed)
The drawing of Aperture Dimensions for mounting cover of door frame
Distance from the panel center of the circuit breaker to the right hinge of cabinet door should be at least 264 mm

BT2-4000 Air Circuit Breakers with three poles (draw-out) The drawing of Aperture Dimensions for mounting cover of door frame
Distance from the panel center of the circuit breaker to the right hinge of cabinet door should be at least 264 mm

BT2-4000 Air Circuit Breakers with four poles (fixed)
The drawing of Aperture Dimensions for mounting cover of door frame
Distance from the panel center of the circuit breaker to the right hinge of cabinet door should be at least 320.5 mm

BT2-4000 Air Circuit Breakers with four poles (draw-out) The drawing of Aperture Dimensions for mounting cover of door frame
Distance from the panel center of the circuit breaker to the right hinge of cabinet door should be at least 320.5 mm

Air Circuit Breakers
 BT2 series
 Dimensions and mounting

\square Door frame dimensions, mm

Aperture Dimension of BT2-6300 door frame

BT2-6300 Air Circuit Breakers with three poles (fixed)
The drawing of Aperture Dimensions for mounting cover of door frame
Distance from the panel center of the circuit breaker to the right hinge of cabinet door should be at least 264 mm

BT2-6300 Air Circuit Breakers with three poles (draw-out) The drawing of Aperture Dimensions for mounting cover of door frame
Distance from the panel center of the circuit breaker to the right hinge of cabinet door should be at least 264 mm

BT2-6300 Air Circuit Breakers with four poles (fixed)
The drawing of Aperture Dimensions for mounting cover of door frame
Distance from the panel center of the circuit breaker to the right hinge of cabinet door should be at least 320.5 mm

BT2-6300 Air Circuit Breakers with four poles (draw-out) The drawing of Aperture Dimensions for mounting cover of door frame
Distance from the panel center of the circuit breaker to the right hinge of cabinet door should be at least 320.5 mm

Air Circuit Breakers
 BT2 series
 Dimensions and mounting

■ Mounting safety clearance

 - Fixed breaker

Minimum distance between breaker with switchboard wall or live part.

	Switchboard wall	Live part
d1 (note) (mm)	0	60
$\mathrm{~d} 2(\mathrm{~mm})$	0	60

Note:secondary circuit wiring must be considered for safety clearance.

- Draw-out breaker

Minimum distance between breaker with switchboard wall or live part.

	Switchboard wall	Live part
d1 (note) (mm)	0	60
d2 (mm)	0	60

■ Dimensions and mounting of Automatic transfer switch (ATS), mm

 - The switching unit

- Type R and S Automatic transfer controller

- Type F automatic transfer controller

Air Circuit Breakers
 BT2 series
 Wiring diagram

■ Wiring diagram of secondary circuit
Wiring diagram of the secondary circuit of BT2-1600 circuit breakers equipped with type L25, M25, M26, P25 and P26 intelligent controllers (OCR)

[^2]
Wiring diagram of the secondary circuit of BT2-1600 circuit breakers equipped with type H26, P25 and P26 communicate intelligent controllers (OCR)

yane

กั่

Special Note: When the voltage of auxiliary power supply is AC230V or AC400V, power supply module of BT2-1600 intelligent should be transformed into DC24V in connection with terminals of 1 and 2 .

Air Circuit Breakers
BT2 series
Wiring diagram
Wiring diagram of the secondary circuit of BT2-2000~6300 circuit breakers equipped with type L25, M25, M26, P26 intelligent controllers (OCR)

The pattern of auxiliary switch

Air Circuit Breakers
BT2 series
Wiring diagram

[^3]

Air Circuit Breakers
BT2 series
Wiring diagram
Wiring diagram of the automatic transfer switch (ATS) for normal supply to standby supply system BT2-2000~6300 circuit breakers and the auxiliary switch has four pairs of changeover contacts

ote:1. $\Lambda \mathrm{s}$ shown in the above diagram the breaker is open and connecting, it has been charged and there is no current in the loop.
2. When $\Lambda \mathrm{TS}$ is used all voltage ratings are $\Lambda \mathrm{C} 230 \mathrm{~V}$ for intelligent controller,shunt release, elosing magnet and automatic operation mechanism. AX-Auxiliary switch
AX-Auxi release
F-Shunt
X-The electro-m
M-Charging motor
X-The electro-magnet to close the breaker
M-Charging motor
SA-Overtravel-lim
XT-Terminals for the secondary circuit of the breaker
Wiring diagram of the automatic transfer switch (ATS) for normal supply to power generating
supply system

[^4]Vote: $1 . \Lambda s$ shown in the above diagram the breaker is open and connecting,it has been charged and there is no current in the loop.

Air Circuit Breakers
 BT2 series
 Ordering form

■ Ordering form

1. Users should make sure of their detailed acquaintance of the products' technological materials and make order by the "ordering form"in terms of future applicable situations of the circuit breakers.
2. The company would configure by"Factory's setting values of the intelligent release" if users had no requirements of protection parameters when making order.

Ordering form

■ Ordering notice
Factory's setting values of intelligent controller

Overload long-time delay	Setting values of current $I_{r 1}$	In			
	Setting values of delay time	480s			
	Overload long-time delay of P25 and P26	$1^{2} \mathrm{t}$			
Short circuit short-time delay	Setting values of current $I_{r 2}$	$6 I_{\text {r1 }}$			
	Setting values of delay time t_{2}	0.2 s			
Setting values of short circuit instantaneous current I_{13}		$\begin{array}{\|l} \hline 15 \ln (\text { for } \ln \leq 1000 A) \\ 12 \ln (\text { for } \ln =1250 A, 1600 \mathrm{~A}) \\ 10 \ln (\text { for } \ln \geq 2000 \mathrm{~A}) \\ \hline \end{array}$			
Ground-fault (Not for L25, M25, P25)	Setting values of current $\mathrm{I}_{\mathrm{t} 4}$	BT2-1600	$\begin{aligned} & \hline \text { BT2-2000 } \\ & \text { BT2-2500 } \\ & \hline \end{aligned}$	BT2-4000	BT2-6300
		0.8 In or 1000 A To select the minimum	0.8 In or 1200A To select the minimum	0.8 In or 1600 A To select the minimum	2000A
	Setting values of delay time t_{4}	0.4s			
Load-monitoring (Not for type L25, optional for type M25, M26, H26, P25 and P26)	Monitoring current $\mathrm{I}_{\mathrm{LC} 1}$	In			
	Monitoring current $\mathrm{I}_{\mathrm{LC} 2}$	In			

Catalog Disclaimer

The information contained in this catalog does not constitute an express or implied warranty of quality, any warranty of merchantability of fitness for a particular purpose is hereby disclaimed.

Since the user's product information, specific use application, and conditions of use are all outside of Fuji Electric FA Components \& Systems'control, it shall be the responsibility of the user to determine the suitability of any of the products mentioned for the user's application.

One Year Limited Warranty

The products identified in this catalog shall be sold pursuant to the terms and conditions identified in the "Conditions of Sale" issued by Fuji Electric FA with each order confirmation.

Except to the extent otherwise provided for in the Conditions of Sale issued by Fuji Electric FA, Fuji Electric FA warrants that the Fuji Electric FA products identified in this catalog shall be free from significant defects in materials and workmanship provided the product has not been: 1) repaired or altered by others than Fuji Electric FA; 2) subjected to negligence, accident, misuse, or damage by circumstances beyond Fuji Electric FA's control; 3) improperly operated, maintained or stored; or 4) used in other than normal use or service. This warranty shall apply only to defects appearing within one (1) year from the date of shipment by Fuji Electric FA, and in such case, only if such defects are reported to Fuji Electric FA within thirty (30) days of discovery by purchaser. Such notice should be submitted in writing to Fuji Electric FA at 5-7, Nihonbashi Odemma-cho, Chuo-ku, Tokyo, Japan. The sole and exclusive remedy with respected to the above warranty whether such claim is based on warranty, contract, negligence, strict liability or any other theory, is limited to the repair or replacement of such product or, at Fuji Electric FA's option reimbursement by Fuji Electric FA of the purchase price paid to Fuji Electric FA for the particular product. Fuji Electric FA does not make any other representations or warranties, whether oral or in writing, expressed or implied, including but not limited to any warranty regarding merchantability or fitness for a particular purpose. Except as provided in the Conditions of Sale, no agent or representative of Fuji Electric FA is authorized to modify the terms of this warranty in writing or orally.

In no event shall Fuji Electric FA be liable for special, indirect or consequential damages, including but not limited to, loss of use of the product, other equipment, plant and power system which is installed with the product, loss of profits or revenues, cost of capital, or claims against the purchaser or user of the product by its customers resulting from the use of information, recommendations and descriptions contained herein. The purchaser agrees to pass on to its customers and users, in writing at the time inquiries and orders are received by buyer, Fuji Electric FA's warranty as set forth above.

§. Safety Considerations

- Operate (keep) in the environment specified in the operating instructions and manual. High temperature, high humidity, condensation, dust, corrosive gases, oil, organic solvents, excessive vibration or shock might cause electric shock, fire, erratic operation or failure.
- For safe operation, before using the product read the instruction manual or user manual that comes with the product carefully or consult the Fuji sales representative from which you purchased the product.
- Products introduced in this catalog have not been designed or manufactured for such applications in a system or equipment that will affect human bodies or lives.
- Customers, who want to use the products introduced in this catalog for special systems or devices such as for atomic-energy control, aerospace use, medical use, passenger vehicle, and traffic control, are requested to consult with Fuji Electric FA.
- Customers are requested to prepare safety measures when they apply the products introduced in this catalog to such systems or facilities that will affect human lives or cause severe damage to property if the products become faulty.
- For safe operation, wiring should be conducted only by qualified engineers who have sufficient technical knowledge about electrical work or wiring.
- Follow the regulations of industrial wastes when the product is to be discarded.
- For further questions, please contact your Fuji sales representative or Fuji Electric FA.

Fuji Electric FA Components \& Systems Co., Ltd.
5-7, Nihonbashi Odemma-cho, Chuo-ku, Tokyo, 103-0011, Japan
URL http://www.fujielectric.co.jp/fcs/eng

[^0]: 18: Installation hole
 19: Safety back plate
 20: Wiring terminals of secondary circuit
 21: Side plate
 22: Copper bar of the main cirucit
 23: Draw-out socket
 24: Earthing point at draw-out socket

[^1]: The specifications of copper bars in the above table are introduced under which the circuit breakers by open installation are at maximum ambient environment

[^2]:

[^3]: Wiring diagram of the automatic transfer switch (ATS) for nomal supply to power generating supply system BT2-1600 circuit breakers and the auxiliary switch has four pairs of contacts

[^4]: X-The electro-ma
 M -Charging motor
 SA-Overtravel-limit switch for the charging motor of the breaker
 XT-Terminals for the secondary circuit of the breaker

